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Task 1: Short Questions (30 Points)

(a) (8 Points) Imagine a long, straight country road with houses scattered sparsely along it (we can
picture the road as a line segment with an eastern endpoint and a western endpoint). Our aim is
to place cell phone base stations at certain points along the road, so that every house is within 4
miles of one of the base stations.

Give an efficient algorithm that achieves this goal, using a minimum number of base stations.
Prove that your algorithm is optimal, i.e., one cannot cover all houses with less stations.

(b) (7 Points) Suppose that you wish to find, among all minimum s-t cuts in a flow network G with
non-negative integer capacities, one with the smallest number of edges. How can we modify the
capacities ofG to create a new flow networkG′ such that any minimum s-t cut inG′ is a minimum
cut with the smallest number of edges in G? Explain your answer.

(c) (7 Points) Imagine a 2-dimensional grid modeled by Z × Z. You stand at point (0, 0) and some-
where on the grid there is a treasure that you would like to find. You can only see the treasure if
you are standing on its exact coordinates. In each time step, you can move one step on the grid in
either of the four directions, i.e., if you are standing at (m,n), you can move to either (m+ 1, n),
(m− 1, n), (m,n+ 1) or (m,n− 1).

Let OPT be the minimum number of steps needed to go from (0, 0) to the treasure. We define the
competitive ratio of an algorithm that finds the treasure within ALG steps as ALG

OPT .

(i) Describe a deterministic algorithm with a competitive ratio of O(OPT) (a picture can be a
sufficient description of the algorithm). Prove the competitive ratio.

(ii) Prove that there is no deterministic algorithm with a competitive ratio smaller than OPT.

(d) (8 Points) Assume that we are given an integer array A of size n and let k := dn/10e. The goal is
to compute an integer array B of length n such that

∀i ∈ {0, . . . , n− 1} : B[i] =

min{n−1,i+k}∑
j=max{0,i−k}

A[j].

Assume further that B has to be computed on an EREW PRAM with p processors. Describe an
efficient parallel algorithm to compute B and give the asymptotic running time of your algorithm
as a function of n and p.
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Task 2: Data Structures and Amortized Analysis (18 Points)

(a) (10 Points) Consider a binary min-heap data structure that supports the two operations insert
and delete-min. The heap is initially empty and we assume that its number of elements never
exceeds n.

(i) Use the potential function method to show that we can consider the amortized cost of
insert to be O(log n) and the amortized cost of delete-min to be O(1).

(ii) We would like to amortize the costs differently such that the amortized cost of insert is
O(1) and the amortized cost of delete-min is O(log n). Either define a feasible potential
function that yields these amortized costs or argue why this is not possible.

You get partial points if you use the accounting method instead of a potential function.

(b) (8 Points) Consider the following Fibonacci heap (black nodes are marked, white nodes are un-
marked). How does the given Fibonacci heap look after after a decrease-key(v, 18) operation and
how does it look after a subsequent delete-min operation?
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Task 3: Bin Covering (12 Points)

The bin covering problem is the following: We are given n items with weights w1, . . . , wn ∈ (0, 1)
and an unlimited number of bins with unlimited capacities. We want to assign the items to the bins
such that we maximize the number of bins with total weight at least 1.

Assume the items arrive in an online fashion, i.e., we have to assign each item to a bin immediately
after the item arrives without knowing the number of future items or their weights.

Give a deterministic algorithm for this problem that has the optimal strict competitive ratio. You
should prove the competitive ratio of your algorithm and also show that no deterministic algorithm for
this problem has a better strict competitive ratio.
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Task 4: Work Schedule (15 Points)

Assume you want to design a work schedule for a hospital for the next n days. The hospital employs
k doctors. On day i, exactly pi doctors need to be present, for i = 1, . . . , n. Each doctor j provides a
set Lj ⊆ {1, . . . , n} of days on which he or she is willing to work.

(a) (9 Points) Describe a polynomial-time algorithm that either

• returns a list L′j ⊆ Lj of working days for each doctor j such that on day i, exactly pi doctors
are present or

• reports that there is no such set of lists that fulfills the given constraints.

(b) (6 Points) The hospital finds that the doctors tend to submit lists that are much too restrictive,
and so it often happens that there is no feasible working schedule. Thus, the hospital relaxes the
requirements in the following way. For some number c > 0, each doctor j can be forced to work
on c days which are not in his/her list Lj .

Give a polynomial-time algorithm to solve this problem, i.e., the algorithm should either

• return a list L′j of working days for each doctor j with |L′j \ Lj| ≤ c such that on day i,
exactly pi doctors are present or

• report that there is no such set of lists that fulfills the given constraints.
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Task 5: Randomization (25 Points)

Given a set S of n pairwise distinct numbers and a number k ∈ {1, . . . , n}, we want to define a
function that returns the kth largest element of S.

To this end, the following randomized divide and conquer algorithm is given:

Algorithm 1 select(S, k)
1: Choose a pivot x ∈ S uniformly at random
2: S− = ∅
3: S+ = ∅
4: for all y ∈ S \ {x} do
5: if y < x then
6: S− = S− ∪ {y}
7: else
8: S+ = S+ ∪ {y}
9: if |S−| = k − 1 then

10: return x
11: else if |S−| ≥ k then
12: return select(S−, k)
13: else if |S−| < k − 1 then
14: return select(S+, k − |S−| − 1)

(a) (4 Points) Shortly explain why select(S, k) is correct, i.e., returns the kth largest element of S,
and explain the worst-case runtime.

(b) (3 Points) What is the probability that both |S+| ≤ 3
4
|S| and |S−| ≤ 3

4
|S| (after one iteration)?

Explain your answer. For simplicity, you may assume that |S| is a multiple of 4.

(c) (6 Points) Give an upper bound on the expected time until S shrinks at least by a factor 3
4
, i.e.,

until select(S, k) makes a recursive call on a set of size at most 3
4
|S|.

Comment: With time we mean the number of basic steps and not just the number of recursive
calls. Giving the expected time asymptotically (in O-notation) is sufficient.

Hint: Use part (b)

(d) (6 Points) Give an upper bound on the expected runtime of select(S, k). Explain your answer.

Hint: Use part (c)

(e) (6 Points) Show that select(S, k) terminates in time O(n log n) with probability at least 1− 1
n

.

Hint: Use part (b) and Chernoff’s Bound: IfX1, . . . , Xn is a sequence of independent 0-1 random
variables, X =

∑
Xi and µ = E[X], then for any 0 < δ < 1 we have

Pr(X ≤ (1− δ)E[X]) ≤ e−
δ2

2
E[X] .
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Task 6: Maximum Independent Set Approximation (20 Points)

An independent set of a graph G = (V,E) is a subset I ⊆ V of nodes such that for all x, y ∈ I
we have {x, y} /∈ E, i.e., each two nodes in I are non-adjacent. A maximum independent set is an
independent set of maximum size. We consider the problem of finding a maximum independent set in
n× n-node grid graphs like the following:

(a) (6 Points) Let S be a maximum independent set of a given grid graph G. Further assume that
we compute an independent set I of G by the following simple greedy algorithm. We start with
I = ∅. We then iterate through the nodes of G in an arbitrary order. When processing node v,
we add v to I if no neighbor of v has already been added to I . Show that |I| ≥ 3

10
· |S|.

Hint: Find an upper bound for |S| and a lower bound for |I|, both in terms of n. Note that the
ratio 3/10 is not tight, one could even show that |I| > 2

5
· |S|.

Now we consider a weighted version of the above problem. Given a grid graph G = (V,E), assume
that each node v has a weight w(v) ∈ N. The weight of a set S ⊆ V is defined as w(S) =

∑
v∈S w(v).

The goal is to find an independent set of maximum weight.

Consider the following greedy algorithm for this problem:

Algorithm 2 heaviest-first
I = ∅
while G is not empty do

Pick a node v of maximum weight.
Add v to I .
Delete v and v’s neighbors from G.

return I

(b) (3 Points) Let I be the independent set returned by heaviest-first. Show that for each
node v ∈ V , either v ∈ I or v is adjacent to a node v′ ∈ I with w(v) ≤ w(v′).

(c) (6 Points) Let S be an independent set with maximum weight. Show that heaviest-first
computes an independent set I with w(I) ≥ w(S)/4.

Hint: Iterate through the nodes of S and use part (b).

(d) (5 Points) Show that this approximation ratio of heaviest-first is tight, i.e., for any con-
stant c > 1/4, there is a graph on which the heaviest-first algorithm computes a solution
I with w(I) < c · w(S), where S is a maximum weight independent set.
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