

Algorithm Theory Exercise Sheet 1

Due: Tuesday, 26th of October, 2021, 4 pm

Exercise 1: Sort Functions by Asymptotic Growth (8 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " between two functions in the sequence if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

Note: No formal proofs required, but you loose 1 point for each error.

$\log_2(n!)$	\sqrt{n}	$\sqrt{n^3}$	$\log_2(n^2)$
$n^2 + n \log_2(n^2)$	3^n	$n^{\log_2 n}$	$(\log_2 n)^2$
$\log_{10} n$	$10^{100} \cdot n$	n!	$n\log_2 n$
$n \cdot 2^n$	n^n	$\sqrt{\log_2 n}$	n^2

Exercise 2: Maximum Rectangle in a Histogram

Consider a sequence h_1, \ldots, h_n of positive, integer numbers. This sequence represents a histogram H consisting of n horizontally aligned bars each of width 1, where h_i represents the height of the i^{th} bar. The goal is to find a rectangle of maximum area completely within H (i.e., within the union of bars).

- (a) Describe an algorithm that computes a maximum area rectangle in H in time $\mathcal{O}(n^2)$.
- (b) Describe an algorithm that computes a maximum area rectangle that is within H and also intersects the i^{th} bar in time $\mathcal{O}(n)$ and prove the running time.

Remark: correct solutions in $o(n^2)$ grant partial points.

(c) Give an algorithm that uses the divide and conquer principle to compute a maximum area rectangle in H in time $\mathcal{O}(n \log n)$ and prove the running time.

Remark: you can use part (b), even if you did not succeed.

(12 Points)