

Algorithm Theory Exercise Sheet 3

Due: Tuesday, 9th of November, 2021, 4 pm

Exercise 1: Scheduling

Given n jobs of lengths $t_1 \ldots, t_n$ with one deadline $d \ge 0$, we want to schedule these jobs such that the average lateness is minimized. That is, for each job i we want to find a start time and finishing time $0 \le s(i) \le f(i)$ with $f(i) - s(i) = t_i$ such that the intervals [s(i), f(i)] are pairwise non-overlapping (overlapping start- and endpoints are allowed) and the average over all $L(i) = \max\{0, f(i) - d\}$ is minimal.

- (a) Describe a greedy algorithm for this problem.
- (b) Prove that it computes an optimal solution.

Exercise 2: Prefix Codes

Imagine you have *n* characters c_1, \ldots, c_n and each has a frequency f_1, \ldots, f_n (w.l.o.g. sorted ascending) with which it occurs in a text. The goal is to compute a code over $\{0, 1\}$ for each character (i.e., assign a unique bit sequence to each character) which is prefix-free, i.e., no codeword is a prefix of another.

Such a *prefix code* can be obtained by constructing a full binary tree¹: Use the characters c_1, \ldots, c_n as leaves, assign 0 and 1 to all edges, such that internal nodes have a child with a 0-edge *and* a child with a 1-edge. The code of c_i is then given by the bits on the path from the root to the leaf c_i .

The goal is to minimize the total length of a message with the given frequency of symbols, i.e. $\sum_{i=1}^{n} f_i \cdot \ell_i$, where ℓ_i is the length of the codeword of c_i . Analogously, we want to find a full binary tree that minimizes $\sum_{i=1}^{n} f_i \cdot d_i$, where d_i is the (unweighted) length of the path from root to c_i (depth).

Such a tree can be constructed with a greedy method: Start with c_1, \ldots, c_n as leaves (w.l.o.g. sorted by frequency). Add an internal node and make the two least frequent characters c_1, c_2 its children (break ties arbitrarily). The internal node becomes a new character c_{n+1} with frequency $f_{n+1} = f_1 + f_2$. Then "remove" the leaves c_1, c_2 and recurse on the characters c_3, \ldots, c_{n+1} (i.e., treat c_{n+1} as new leaf). We call the resulting tree the greedy tree and the resulting prefix-code for c_1, \ldots, c_n the greedy code.

- (a) Construct the greedy tree and greedy code for n = 6 characters with frequency $f_i = i$. (3 Points) Remark: for more consistent solutions, assign 0 the left-child edges and 1 to right-child edges.
- (b) Show that there is an optimal full binary tree T with leaves c₁,..., c_n (i.e., that minimizes ∑_{i=1}ⁿ f_i·d_i), in which the two least frequent elements c₁, c₂ are siblings. (5 Points) Hint: Show that for two siblings c_j, c_k which are at largest depth in some full binary tree it does not make ∑_{i=1}ⁿ f_i·d_i larger if we swap c_j with c₁ and c_k with c₂.
- (c) Give an inductive argument that the greedy code is optimal.

(8 Points)

(12 Points)

(3 Points)

(5 Points)

(4 Points)

 $^{^1\}mathrm{In}$ a full binary tree each node has 0 or 2 children.