
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Exercise Sheet 4
Due: Tuesday, 16th of November, 2021, 4 pm

Exercise 1: Bagging Marbles (8 Points)

We have n marbles and an array A[1..n], where entry A[i] equals the price of a bag with exactly i
marbles. We want to distribute the n marbles into bags such that the profit, which is the total value
of all bags (with at least one marble), is maximized.

(a) Give an efficient algorithm that uses the principle of dynamic programming to compute the max-
imum profit one can make. (4 Points)

(b) Argue why your algorithm is correct. Give a tight (asymptotic) upper bound for the running time
of your algorithm and prove that it is an upper bound for your solution. (4 Points)

Exercise 2: Parenthesization (12 Points)

Consider a string B of n ≥ 3 symbols over {0, 1,∧,∨,⊕} which correspond to boolean true and false
values and the logical operators and, or, xor, where B starts and ends with 0 or 1, and a 0 or 1 is
always followed by one of the operators ∧,∨,⊕ (unless it is the last symbol).

The goal is to count the number of possibilities you can put substrings of B reasonably into brackets,
such that it evaluates to true (i.e., 1). Roughly speaking, by reasonable we mean that it is clear in
which order to evaluate the operators of B and there are no unnecessary brackets.

Formally we define a reasonable parenthesization of such a string B (that does not have any brackets
yet) recursively as follows. In the base case, if B has just one operator then there is no need for
brackets, i.e., the only parenthesization of B that is reasonable is if there are no parenthesis.

If B has more than two operators we pick an operator o in B and define the substring either to o’s left
or to its right as B′. If |B′| ≥ 3, we put the substring B′ into brackets and recursively pick a reasonable
parenthesization of B′. Then we pick a reasonable parenthesization of B where the substring (B′) is
replaced with a single symbol x (which we now consider as a boolean value 0,1). All parenthesizations
of B that can be obtained this way are reasonable.1

(a) Let B = 0 ⊕ 1 ∨ 0 ∧ 0 ∨ 1. Give all reasonable parenthesizations of B (as defined above) so that
the resulting expression evaluates to true (it is sufficient to give their total number if you feel
confident that it is correct). (2 Points)

(b) Give an efficient algorithm that uses the principle of dynamic programming to compute the number
of reasonable parenthesizations of B that evaluate B to true. (6 Points)

(c) Argue why your algorithm is correct. Give a tight (asymptotic) upper bound for the running time
of your algorithm and prove that it is an upper bound for your solution. (4 Points)

1Alternatively, we obtain the reasonable parenthesizations by splitting string B (with |B| > 3, otherwise use the base
case) at some operator o into the substrings B1, B2, left and right of o, respectively. Then put each substring B1, B2

with at least 3 symbols into brackets and recursively determine reasonable parenthesizations.

