

Algorithm Theory Exercise Sheet 11

Due: Tuesday, 18th of January, 2022, 4 pm

Exercise 1: Randomized Coloring

(20 Points)

Let G = (V, E) be a simple, undirected graph with maximum degree Δ . A vertex coloring of a graph is an assignment of colors to the vertices such that adjacent vertices have different colors. More formally, a coloring ϕ is a mapping $\phi : V \to C$ from V to a color space C such that $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$.

Consider the following randomized algorithm to compute a coloring of G with 2Δ colors, i.e., a coloring $\phi: V \to \{1, \ldots, 2\Delta\}$.

Each uncolored node v assigns itself a tentative color $c_v \in \{1, \ldots, 2\Delta\}$ uniformly at random. If v has no neighbor with the same (tentative or permanent) color, it keeps c_v permanently. Otherwise it uncolors itself again. Repeat until all nodes are colored. In pseudocode:

Algorithm 1 color(G)1: for $v \in V$ do $\phi(v) = \bot$ 2: \triangleright each node is initially uncolored 3: while there is a v with $\phi(v) = \bot \mathbf{do}$ for each u with $\phi(u) = \bot$ independently do 4: choose $c_u \in \{1, \ldots, 2\Delta\}$ uniformly at random 5: 6: for each u with $\phi(u) = \bot$ do if u has no neighbor w with $c_u = c_w$ or $c_u = \phi(w)$ then 7: 8: $\phi(u) := c_u$

We call one run of the while-loop in line 3 a round.

- (a) Show that for each round and each uncolored node u, the probability that the condition in line 7 is true (i.e., u permanently chooses a color) is at least 1/2. (7 Points)
- (b) Show that in each round, in expectation, the number of uncolored nodes is at least halved. (4 Points)

Hint: Use part (a).

(c) Show that color terminates in $O(\log n)$ rounds with high probability. That is, for a given c > 0, color terminates in $O(\log n)$ rounds with probability at least $1 - \frac{1}{n^c}$. (9 Points) Hint: Use part (a).