

Algorithm Theory Exercise Sheet 12

Due: Tuesday, 25th of January, 2022, 4 pm

Exercise 1: Minimum Vertex Cover Approximation (20 Points)

Let G = (V, E) be an *undirected, unweighted* graph. Consider the following algorithms that give approximate solutions to the minimum vertex cover problem.

Algorithm 1 alg1	Algorithm 2 alg2
1: $S \leftarrow \emptyset$ \triangleright create an empty set	1: $S \leftarrow \emptyset$ \triangleright create an empty set
2: while $E \neq \emptyset$ do	2: while $E \neq \emptyset$ do
3: pick some edge $\{u, v\} \in E$	3: pick vertex $v \in V$ of maximal degree
4: $S \leftarrow S \cup \{u, v\}$	4: $S \leftarrow S \cup \{v\}$
5: remove edges incident to u or v from E	5: remove edges incident to v from E
6: return S	6: return S

(a) Show that alg1 and alg2 output valid vertex covers.

(3 Points)

- (b) Argue why alg1 provides a 2-approximation of the minimum vertex cover problem. (3 Points) Hint: You can use results that we proved in the lecture.
- (c) Argue why alg2 provides a $O(\log n)$ -approximation of the minimum vertex cover problem. (5 Points) Hint: You can use results that we proved in the lecture.
- (d) Show that the solution provided by alg2 is only a $\Theta(\log n)$ approximation for some graphs. (9 Points)

Hint: Give a bipartite graph with node set $V = L \cup R$ and |L| = k and $|R| = \Theta(k \log k)$, where alg2 outputs R but the best solution would be L.