IIF

Chapter 10
 Parallel Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Sequential Algorithms

Classical Algorithm Design:

- One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

- Basic standard model
- Unit cost basic operations
- Unit cost access to all memory cells

Sequential Algorithm / Program:

- Sequence of operations (executed one after the other)

Parallel and Distributed Algorithms

Today's computers/systems are not sequential:

- Even cell phones have several cores
- Future systems will be highly parallel on many levels
- This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

- Exploit parallelism to speed up computations
- Shared resources such as memory, bandwidth, ...
- Increase reliability by adding redundancy
- Solve tasks in inherently decentralized environments

Parallel and Distributed Systems

- Many different forms
- Processors/computers/machines/... communicate and share data through
- Shared memory or message passing
- Computation and communication can be
- Synchronous or asynchronous
- Many possible topologies for message passing
- Depending on system, various types of faults

Challenges

Algorithmic and theoretical challenges:

- How to parallelize computations
- Scheduling (which machine does what)
- Load balancing
- Fault tolerance
- Coordination / consistency
- Decentralized state
- Asynchrony
- Bounded bandwidth / properties of comm. channels

Models

- A large variety of models, e.g.:
- PRAM (Parallel Random Access Machine)
- Classical model for parallel computations
- Shared Memory
- Classical model to study coordination / agreement problems, distributed data structures, ...
- Message Passing (fully connected topology)
- Closely related to shared memory models
- Message Passing in Networks
- Decentralized computations, large parallel machines, comes in various flavors...
- Computations in large clusters of powerful individual machines: Massively Parallel Computations (MPC)

PRAM

- Parallel version of RAM model
- processors, shared random access memory

- Basic operations / access to shared memory cost 1
- Processor operations are synchronized
- Focus on parallelizing computation rather than cost of communication, locality, faults, asynchrony, ...

Other Parallel Models

- Message passing: Fully connected network, local memory and information exchange using messages
- Dynamic Multithreaded Algorithms: Simple parallel programming paradigm
- E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

```
Fib \((n)\)
    1 if \(n<2\)
2 then return \(n\)
\(3 x \leftarrow\) spawn \(\operatorname{FiB}(n-1)\)
\(4 y \leftarrow\) spawn \(\operatorname{FiB}(n-2)\)
5 sync
\(6 \xlongequal[\text { return }]{ }(x+y)\)
```


Parallel Computations

Sequential Computation:

- Sequence of operations

Parallel Computation:

- Directed Acyclic Graph (DAG)

Parallel Computations

T_{p} : time to perform comp. with $\underline{\underline{p}}$ procs

- T_{1} : work (total \# operations)
- Time when doing the computation sequentially
- T_{∞} : critical path / span
- Time when parallelizing as much as possible
- Lower Bounds:

$$
T_{p} \geq\left\lceil\frac{T_{1}}{p}\right\rceil
$$

Parallel Computations

T_{p} : time to perform comp. with p procs

- Lower Bounds:

$$
T_{p} \geq \frac{T_{1}}{p}, \quad T_{p} \geq T_{\infty}
$$

- Parallelism: $\frac{T_{1}}{T_{\infty}}$
- maximum possible speed-up
- Linear Speed-up:

$$
\frac{T_{p \prime}}{T_{p}}=\Theta(p)
$$

Scheduling

- How to assign operations to processors?
- Generally an online problem
- When scheduling some jobs/operations, we do not know how the computation evolves over time

Greedy (offline) scheduling:

- Order jobs/operations as they would be scheduled optimally with \propto processors (topological sort of DAG)
- Easy to determine: With ∞ processors, one always schedules all jobs/ops that can be scheduled
- Always schedule as many jobs/ops as possible
- Schedule jobs/ops in the same order as with ∞ processors
- i.e., jobs that become available earlier have priority

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$
\underline{\underline{T}}{ }_{p} \leq \frac{T_{1}-T_{\infty}}{p}+T_{\infty}
$$

Proof:

- Greedy scheduling achieves this...
- \#operations scheduled with ∞ processors in round $i: \underline{x_{i}}$ pprocs. t_{i} : dime to schedule x_{i} ops

$$
\begin{gathered}
t_{i}=\left[\frac{x_{i}}{p}\right] \leqslant \frac{x_{i}}{p}+\frac{p-1}{p}=\frac{x_{i}-1}{p}+1 \\
T_{p}^{(G)} \leqslant \sum_{i=1}^{T_{\infty}} t_{i} \leqslant \underbrace{\frac{1}{\sum_{i=1}} x_{i}-\underbrace{\frac{T_{\infty}}{P} \sum_{i=1}^{\sum_{1}}}_{T_{\infty}}+\underbrace{\sum_{i=1}^{T_{\infty}} 1}_{T_{\infty}}=\frac{T_{1}-T_{\infty}}{P}+T_{\infty}}_{T_{1}} .
\end{gathered}
$$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$
T_{p} \leq \frac{T_{1}-T_{\infty}}{p}+T_{\infty}
$$

Proof:

- Greedy scheduling achieves this...
- \#operations scheduled with ∞ processors in round $i: \boldsymbol{x}_{\boldsymbol{i}}$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$
T_{p} \leq \frac{T_{1}-T_{\infty}}{p}+T_{\infty} .
$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

$$
\begin{aligned}
& T_{p}^{*} \geq \frac{T_{1}}{p} \\
& T_{p}^{*} \geqslant T_{\infty}
\end{aligned} \quad T_{p}^{(4)} \leqslant \frac{T_{1}}{p}+T_{\infty} \leq 2 \cdot T_{p}^{*}
$$

Corollary: As long as the number of processors $p=0\left(T_{1} / T_{\infty}\right)$, it is possible to achieve a linear speed-up.

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

PRAM

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
- Weak CRCW: concurrent write only OK if all processors write 0
- Common-mode CRCW: all processors need to write the same value
- Arbitrary-winner CRCW: adversary picks one of the values
- Priority CRCW: value of processor with highest ID is written
- Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:
weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t_{2} using p proc. on a strong CRCW machine, can also be performed in time $\bar{O}(t \log p)$ using \underline{p} processors on an EREW machine.

- Each (parallel) step on the CRCW machine can be simulated by $O(\underline{\log p})$ steps on an EREW machine
concurrent writes: memory cell c, coordinate access to c cell c: auxiliary mem. cells (initialized to \perp)

Algorithm Theory, WS 2019/20
Fabian Kuhn

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

- Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine
Concurrent reads

Some Relations Between PRAM Models

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

- Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine

Theorem: A parallel computation that can be performed in time t, using p probabilistic processors on a strong CRCW machine, can also be performed in expected time $O(t \log p)$ using $O(p / \log p)$ processors on an arbitrary-winner C $\overline{R C W}$ machine.

- The same simulation turns out more efficient in this case

$$
p<\frac{T_{1}}{T_{p} \log p}
$$

Some Relations Between PRAM Models

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time $O(t)$ using $O \underline{\left.\underline{\left(p^{2}\right.}\right)}$ processors on a weak CRCW machine Proof:

- Strong: largest value wins, weak: only concurrently writing 0 is OK

