

Chapter 10 Parallel Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Sequential Algorithms

Classical Algorithm Design:

One machine/CPU/process/... doing a computation

RAM (Random Access Machine):

- Basic standard model
- Unit cost basic operations
- Unit cost access to all memory cells

Sequential Algorithm / Program:

 Sequence of operations (executed one after the other)

Parallel and Distributed Algorithms

Today's computers/systems are not sequential:

- Even cell phones have several cores
- Future systems will be highly parallel on many levels
- This also requires appropriate algorithmic techniques

Goals, Scenarios, Challenges:

- Exploit parallelism to speed up computations
- Shared resources such as memory, bandwidth, ...
- Increase reliability by adding redundancy
- Solve tasks in inherently decentralized environments
- ...

Parallel and Distributed Systems

- Many different forms
- Processors/computers/machines/... communicate and share data through
 - Shared memory or message passing
- Computation and communication can be
 - Synchronous or asynchronous
- Many possible topologies for message passing
- Depending on system, various types of faults

Challenges

Algorithmic and theoretical challenges:

- How to parallelize computations
- Scheduling (which machine does what)
- Load balancing
- Fault tolerance
- Coordination / consistency
- Decentralized state
- Asynchrony
- Bounded bandwidth / properties of comm. channels
- ...

Models

- A large variety of models, e.g.:
- PRAM (Parallel Random Access Machine)
 - Classical model for parallel computations
- Shared Memory
 - Classical model to study coordination / agreement problems, distributed data structures, ...
- Message Passing (fully connected topology)
 - Closely related to shared memory models
- Message Passing in Networks
 - Decentralized computations, large parallel machines, comes in various flavors...
- Computations in large clusters of powerful individual machines: Massively Parallel Computations (MPC)

PRAM

- Parallel version of RAM model
- p processors, shared random access memory

- Basic operations / access to shared memory cost 1
- Processor operations are synchronized
- Focus on parallelizing computation rather than cost of communication, locality, faults, asynchrony, ...

Other Parallel Models

- Message passing: Fully connected network, local memory and information exchange using messages
- Dynamic Multithreaded Algorithms: Simple parallel programming paradigm
 - E.g., used in Cormen, Leiserson, Rivest, Stein (CLRS)

```
FIB(n)
1 if n < 2
2 then return n
3 x \leftarrow \operatorname{spawn} \operatorname{FIB}(n-1)
4 y \leftarrow \operatorname{spawn} \operatorname{FIB}(n-2)
5 sync
6 return (x+y)
```


Parallel Computations

Sequential Computation:

Sequence of operations

Parallel Computation:

Directed Acyclic Graph (DAG)

Parallel Computations

 T_p : time to perform comp. with p procs

- T_1 : work (total # operations)
 - Time when doing the computation sequentially
- T_{∞} : critical path / span
 - Time when parallelizing as much as possible
- Lower Bounds:

$$T_p \geq \left\lceil \frac{T_1}{p} \right\rceil$$

Parallel Computations

 T_p : time to perform comp. with p procs

Lower Bounds:

$$T_p \ge \frac{T_1}{p}, \qquad T_p \ge T_\infty$$

- Parallelism: $\frac{T_1}{T_{\infty}}$
 - maximum possible speed-up
- Linear Speed-up:

$$\frac{T_{p}}{T_{p}} = \Theta(p)$$

Scheduling

- How to assign operations to processors?
- Generally an online problem

When scheduling some jobs/operations, we do not know how the computation evolves over time

Greedy (offline) scheduling:

- Order jobs/operations as they would be scheduled optimally with ∞ processors (topological sort of <u>DAG</u>)
 - Easy to determine: With ∞ processors, one always schedules all jobs/ops that can be scheduled
- Always schedule as many jobs/ops as possible
- Schedule jobs/ops in the same order as with ∞ processors
 - i.e., jobs that become available earlier have priority

Brent's Theorem

X2

Brent's Theorem: On p processors, a parallel computation can be

performed in time

$$T_p \leq \frac{T_1 - T_{\infty}}{p} + T_{\infty}.$$

- Greedy scheduling achieves this...
- #operations scheduled with ∞ processors in round i: x_i

$$P$$
 procs. t_i : time to schedule x_i ops
$$t_i = \left\lceil \frac{x_i}{P} \right\rceil \leq \frac{x_i}{P} + \frac{P^{-1}}{P} = \frac{x_{i-1}}{P} + 1$$

$$T_{p}^{(6)} \leq \sum_{i=1}^{700} t_{i} \leq \frac{1}{p} \sum_{i=1}^{700} x_{i} - \frac{1}{p} \sum_{i=1}^{700} t_{i} + \sum_{i=1}^{700} t_{i} = \frac{T_{i} - T_{0}}{p} + T_{0}$$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

Proof:

- Greedy scheduling achieves this...
- #operations scheduled with ∞ processors in round $i: x_i$

Brent's Theorem

Brent's Theorem: On p processors, a parallel computation can be performed in time

$$T_p \leq \frac{T_1 - T_\infty}{p} + T_\infty.$$

Corollary: Greedy is a 2-approximation algorithm for scheduling.

$$T_{p}^{*} \geq \frac{T_{1}}{p}$$

$$T_{3}^{(6)} \leq \frac{T_{1}}{p} + T_{\infty} \leq 2.T_{p}^{*}$$

$$T_{p}^{*} \geq T_{\infty}$$

Corollary: As long as the number of processors $p = O(T_1/T_{\infty})$, it is possible to achieve a linear speed-up.

PRAM

Back to the PRAM:

- Shared random access memory, synchronous computation steps
- The PRAM model comes in variants...

EREW (exclusive read, exclusive write):

- Concurrent memory access by multiple processors is not allowed
- If two or more processors try to read from or write to the same memory cell concurrently, the behavior is not specified

CREW (concurrent read, exclusive write):

- Reading the same memory cell concurrently is OK
- Two concurrent writes to the same cell lead to unspecified behavior
- This is the first variant that was considered (already in the 70s)

PRAM

The PRAM model comes in variants...

CRCW (concurrent read, concurrent write):

- Concurrent reads and writes are both OK
- Behavior of concurrent writes has to specified
 - Weak CRCW: concurrent write only OK if all processors write 0
 - Common-mode CRCW: all processors need to write the same value
 - Arbitrary-winner CRCW: adversary picks one of the values
 - Priority CRCW: value of processor with highest ID is written.
 - Strong CRCW: largest (or smallest) value is written
- The given models are ordered in strength:

weak \leq common-mode \leq arbitrary-winner \leq priority \leq strong

Theorem: A parallel computation that can be performed in time t_{λ} using \underline{p} proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

 Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine

Concurrent reads

Theorem: A parallel computation that can be performed in time t, using p proc. on a strong CRCW machine, can also be performed in time $O(t \log p)$ using p processors on an EREW machine.

• Each (parallel) step on the CRCW machine can be simulated by $O(\log p)$ steps on an EREW machine

Theorem: A parallel computation that can be performed in time t, using p probabilistic processors on a strong CRCW machine, can also be performed in expected time $O(t \log p)$ using $O(p/\log p)$ processors on an arbitrary-winner CRCW machine.

The same simulation turns out more efficient in this case

Theorem: A computation that can be performed in time t, using p processors on a strong CRCW machine, can also be performed in time O(t) using $O(\underline{p}^2)$ processors on a weak CRCW machine

Proof:

• Strong: largest value wins, weak: only concurrently writing 0 is OK