
Algorithm Theory

Chapter 1
Divide and Conquer

Part I:
Introduction & Running Time Analysis

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Divide-And-Conquer Principle
• Important algorithm design principle

• Examples from basic alg. & data structures class:
• Sorting: Mergesort, Quicksort
• Binary search

• Further examples
• Median
• Compairing orders
• Convex hull / Delaunay triangulation / Voronoi diagram
• Closest pair of points
• Line intersections
• Polynomial multiplication / FFT
• ...

Algorithm Theory Fabian Kuhn 3

function Quick (𝐴: array): array

{returns the sorted array 𝐴}
begin

if size(𝐴) ≤ 1 then return 𝐴
else { choose pivot element 𝑣 in 𝐴;

partition 𝐴 into 𝐴ℓ with elements ≥ 𝑣,
and 𝐴𝑟 with elements ≥ 𝑣
return

end;

Example 1: Quicksort

𝐴

𝐴ℓ ≤ 𝑣 𝑣 𝐴𝑟 ≥ 𝑣

𝑣

Quick(𝐴ℓ) 𝑣 Quick(𝐴𝑟)

pivot

partition

Algorithm Theory Fabian Kuhn 4

Example 2: Mergesort

𝑆

𝑆ℓ 𝑆𝑟

𝑆ℓ 𝑆ℓ

sort recursively sort recursively

𝑆

merge

Algorithm Theory Fabian Kuhn 5

Divide and Conquer: Highlevel Principle
Divide-and-conquer method for solving a
problem instance of size 𝑛:

1. Divide

𝑛 ≤ 𝑐: Solve the problem directly.

𝑛 > 𝑐: Divide the problem into 𝑘 subproblems of
sizes 𝑛1, … , 𝑛𝑘 < 𝑛 (𝑘 ≥ 2).

2. Conquer

Solve the 𝑘 subproblems in the same way
(typically by using recursion).

3. Combine

Combine the partial solutions to generate a solution
for the original instance.

QS MS

choose
pivot &

partition

divide in
middle

recursion recursion

-
merge
sorted
halves

Algorithm Theory Fabian Kuhn 6

Analysis

Recurrence relation:
• 𝑻(𝒏) : max. number of steps necessary for solving an instance of size 𝑛

• 𝑻(𝒏) = ቐ
𝒄 𝐢𝐟 𝒏 ≤ 𝒏𝟎
𝑻 𝒏𝟏 +⋯+ 𝑻 𝒏𝒌 𝐢𝐟 𝒏 > 𝒏𝟎
+ 𝐜𝐨𝐬𝐭 𝐟𝐨𝐫 𝐝𝐢𝐯𝐢𝐝𝐞 𝐚𝐧𝐝 𝐜𝐨𝐦𝐛𝐢𝐧𝐞

Special case: 𝒌 = 𝟐, 𝒏𝟏 = 𝒏𝟐 = Τ𝒏 𝟐

• cost for divide and combine: DC 𝑛
• 𝑇(1) = 𝑐
• 𝑇 𝑛 = 2 ⋅ 𝑇(𝑛/2) + DC(𝑛)

Mergesort: 𝑇 𝑛 = 2 ⋅ 𝑇 𝑛
2

+ 𝑂(𝑛)Mergesort: 𝑇 𝑛 = 2 ⋅ 𝑇 𝑛
2

+ 𝑂(𝑛)

Algorithm Theory Fabian Kuhn 7

Analysis Example: Mergesort
Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐𝑛, 𝑇 1 ≤ 𝑐

Guess the solution by repeated substitution:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 𝑛
2

+ 𝑐 ⋅ 𝑛

≤ 2 ⋅ 2𝑇 𝑛
4

+ 𝑐 ⋅ 𝑛
2

+ 𝑐 ⋅ 𝑛

≤ 4 ⋅ 2𝑇 𝑛
8

+ 𝑐 ⋅ 𝑛
4

+ 2𝑐 ⋅ 𝑛

⋮
≤ 2𝑘 ⋅ 𝑇 𝑛

2𝑘
+ 𝑘 ⋅ 𝑐𝑛

⋮
≤ 𝑛 ⋅ 𝑇 1 + log2 𝑛 ⋅ 𝑐𝑛 ≤ 𝑐𝑛 ⋅ 1 + log2 𝑛

𝑻(𝒏)

≤ 𝒄𝒏 ⋅ 𝟏 + 𝐥𝐨𝐠𝟐 𝒏

= 4 ⋅ 𝑇 𝑛
4

+ 2𝑐 ⋅ 𝑛

= 8 ⋅ 𝑇 𝑛
8

+ 3𝑐 ⋅ 𝑛

Algorithm Theory Fabian Kuhn 8

Analysis Example: Mergesort
Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐𝑛, 𝑇 1 ≤ 𝑐

Verify by induction:
Guess: 𝑻 𝒏 ≤ 𝒄𝒏 ⋅ 𝟏 + 𝐥𝐨𝐠𝟐 𝒏

– For simplicity, assume that 𝑛 is a power of 2

Induction Base: 𝑇 1 ≤ 𝑐 ⋅ 1 ⋅ 1 + log2 1 = 𝑐

Induction Step:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 𝑛
2

+ 𝑐𝑛

𝑇 𝑛 ≤ 2 ⋅ 𝑐 ⋅ 𝑛
2
⋅ 1 + log2

𝑛
2

+ 𝑐𝑛

Plug in induction
hypothesis for 𝑇 Τ𝑛 2 .

Plug in induction
hypothesis for 𝑇 Τ𝑛 2 .

= log2 𝑛= log2 𝑛

= 𝑐 ⋅ 𝑛 ⋅ log2 𝑛= 𝑐 ⋅ 𝑛 ⋅ log2 𝑛

= 𝑐𝑛 ⋅ 1 + log2 𝑛

Algorithm Theory Fabian Kuhn 9

Analysis Example: Mergesort
Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐𝑛, 𝑇 1 ≤ 𝑐

Guess the solution by drawing the recursion tree :

𝑇 𝑛𝑇 𝑛

𝑇 ൗ𝑛 2𝑇 ൗ𝑛 2 𝑇 ൗ𝑛 2𝑇 ൗ𝑛 2

𝑇 ൗ𝑛 4𝑇 ൗ𝑛 4 𝑇 ൗ𝑛 4𝑇 ൗ𝑛 4 𝑇 ൗ𝑛 4𝑇 ൗ𝑛 4 𝑇 ൗ𝑛 4𝑇 ൗ𝑛 4

𝑇 1𝑇 1 𝑇 1𝑇 1 𝑇 1𝑇 1 𝑇 1𝑇 1 𝑇 1𝑇 1

⋮ ⋮ ⋮ ⋮

𝒄𝒏

𝟐 ⋅ 𝒄 ⋅
𝒏
𝟐 = 𝒄𝒏

𝟒 ⋅ 𝒄 ⋅
𝒏
𝟒 = 𝒄𝒏

𝒏 ⋅ 𝑻 𝟏 ≤ 𝒄𝒏

Total time: (𝟏 + 𝐥𝐨𝐠𝟐 𝒏) ⋅ 𝒄𝒏

Algorithm Theory Fabian Kuhn 10

More General Recurrence Relations
Recurrence relation

𝑻 𝒏 = 𝒂 ⋅ 𝑻
𝒏
𝒃

+ 𝑶 𝒏𝒄 , 𝑻 𝒏 = 𝑶 𝟏 for 𝒏 ≤ 𝒏𝟎

Obtain Intuition by Looking at Recursion:

𝑇 𝑛𝑇 𝑛

𝑇 ൗ𝑛 𝑏𝑇 ൗ𝑛 𝑏 𝑇 ൗ𝑛 𝑏𝑇 ൗ𝑛 𝑏 𝑇 ൗ𝑛 𝑏𝑇 ൗ𝑛 𝑏⋯

𝑎

𝑇 ൗ𝑛 𝑏2𝑇 ൗ𝑛 𝑏2 𝑇 ൗ𝑛 𝑏2𝑇 ൗ𝑛 𝑏2⋯

𝑎

𝑇 ൗ𝑛 𝑏2𝑇 ൗ𝑛 𝑏2 𝑇 ൗ𝑛 𝑏2𝑇 ൗ𝑛 𝑏2⋯

𝑎

𝑇 1𝑇 1 𝑇 1𝑇 1 𝑇 1𝑇 1 𝑇 1𝑇 1 𝑇 1𝑇 1

⋮ ⋮ ⋮ ⋮

⋯

Algorithm Theory Fabian Kuhn 11

More General Recurrence Relations
Recurrence relation

𝑻 𝒏 = 𝒂 ⋅ 𝑻
𝒏
𝒃

+ 𝑶 𝒏𝒄 , 𝑻 𝒏 = 𝑶 𝟏 for 𝒏 ≤ 𝒏𝟎

Obtain Intuition by Looking at Recursion:

Rec. Level Subpr. Size #Subproblems Time

1 𝑛 1 1 ⋅ 𝑛𝑐

2 Τ𝑛 𝑏 𝑎 𝑎 ⋅ Τ𝑛 𝑏
𝑐 = 𝑎

𝑏𝑐
⋅ 𝑛𝑐

3 Τ𝑛 𝑏2 𝑎2 𝑎2 ⋅ Τ𝑛 𝑏2
𝑐 = 𝑎

𝑏𝑐
2
⋅ 𝑛𝑐

⋮ ⋮ ⋮ ⋮

log𝑏 𝑛 1 𝑎log𝑏 𝑛 𝑎log𝑏 𝑛 ⋅ 1 = 𝑛log𝑏 𝑎

Algorithm Theory Fabian Kuhn 12

Recurrence relation

𝑻 𝒏 = 𝒂 ⋅ 𝑻
𝒏
𝒃

+ 𝑶 𝒏𝒄 , 𝑻 𝒏 = 𝑶 𝟏 for 𝒏 ≤ 𝒏𝟎

Obtain Intuition by Looking at Recursion Tree:

Rec. Level Subpr. Size #Subproblems Time

1 𝑛 1 1 ⋅ 𝑛𝑐

2 Τ𝑛 𝑏 𝑎 𝑎 ⋅ Τ𝑛 𝑏
𝑐 = 𝑎

𝑏𝑐
⋅ 𝑛𝑐

3 Τ𝑛 𝑏2 𝑎2 𝑎2 ⋅ Τ𝑛 𝑏2
𝑐 = 𝑎

𝑏𝑐
2
⋅ 𝑛𝑐

⋮ ⋮ ⋮ ⋮

log𝑏 𝑛 1 𝑎log𝑏 𝑛 𝑎log𝑏 𝑛 ⋅ 1 = 𝑛log𝑏 𝑎

More General Recurrence Relations

Observations:
• Time grows/shrinks by factor Τ𝑎 𝑏𝑐 per level

• If Τ𝑎 𝑏𝑐 < 1 (𝑐 > log𝑏 𝑎), first level dominates:
𝑇 𝑛 = 𝑂 𝑛𝑐

• If Τ𝑎 𝑏𝑐 > 1 (𝑐 < log𝑏 𝑎), last level dominates:
𝑇 𝑛 = 𝑂 𝑛log𝑏 𝑎

• If Τ𝑎 𝑏𝑐 = 1 (𝑐 = log𝑏 𝑎), all levels are the same:
𝑇 𝑛 = 𝑂 𝑛𝑐 ⋅ log 𝑛

Observations:
• Time grows/shrinks by factor Τ𝑎 𝑏𝑐 per level

• If Τ𝑎 𝑏𝑐 < 1 (𝑐 > log𝑏 𝑎), first level dominates:
𝑇 𝑛 = 𝑂 𝑛𝑐

• If Τ𝑎 𝑏𝑐 > 1 (𝑐 < log𝑏 𝑎), last level dominates:
𝑇 𝑛 = 𝑂 𝑛log𝑏 𝑎

• If Τ𝑎 𝑏𝑐 = 1 (𝑐 = log𝑏 𝑎), all levels are the same:
𝑇 𝑛 = 𝑂 𝑛𝑐 ⋅ log 𝑛

Algorithm Theory Fabian Kuhn 13

Recurrence Relations: Master Theorem
Recurrence relation

𝑻 𝒏 = 𝒂 ⋅ 𝑻
𝒏
𝒃

+ 𝒇 𝒏 , 𝑻 𝒏 = 𝑶 𝟏 for 𝒏 ≤ 𝒏𝟎

Cases
• 𝑓 𝑛 = 𝑂(𝑛𝑐), 𝑐 < log𝑏 𝑎

𝑻 𝒏 = 𝚯 𝒏𝐥𝐨𝐠𝒃 𝒂

• 𝑓 𝑛 = Ω 𝑛𝑐 , 𝑐 > log𝑏 𝑎

𝑻 𝒏 = 𝚯 𝒇 𝒏

• 𝑓 𝑛 = Θ 𝑛𝑐 ⋅ log𝑘 𝑛 , 𝑐 = log𝑏 𝑎

𝑻 𝒏 = 𝚯 𝒏𝒄 ⋅ 𝐥𝐨𝐠𝒌+𝟏 𝒏

