

Algorithm Theory

Chapter 1 Divide and Conquer

Part I: Introduction & Running Time Analysis

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design principle
- Examples from basic alg. & data structures class:
 - Sorting: Mergesort, Quicksort
 - Binary search
- Further examples
 - Median
 - Compairing orders
 - Convex hull / Delaunay triangulation / Voronoi diagram
 - Closest pair of points
 - Line intersections
 - Polynomial multiplication / FFT
 - ...

function Quick (*A*: array): array

```
{returns the sorted array A}
```

begin

 $\begin{aligned} & \text{if size}(A) \leq 1 \text{ then } \text{return } A \\ & \text{else } \{ \text{ choose pivot element } v \text{ in } A; \\ & \text{ partition } A \text{ into } A_{\ell} \text{ with elements} \geq v, \\ & \text{ and } A_r \text{ with elements} \geq v \\ & \text{ return } \quad \text{Quick}(A_{\ell}) \quad v \quad \text{Quick}(A_r) \end{aligned}$

end;

Divide and Conquer: Highlevel Principle Divide-and-conquer method for solving a problem instance of size *n*: MS QS

$n \leq c$: Solve the problem directly. n > c: Divide the problem into k subproblems of sizes $n_1, \dots, n_k < n$ ($k \geq 2$).	choose pivot & partition	divide in middle
2. Conquer		
Solve the k subproblems in the same way (typically by using recursion).	recursion	recursion
3. Combine		
Combine the partial solutions to generate a solution for the original instance.	-	merge sorted halves
Algorithms Theory		F

Analysis

Recurrence relation:

• T(n): max. number of steps necessary for solving an instance of size n

•
$$T(n) = \begin{cases} c & \text{if } n \leq n_0 \\ T(n_1) + \dots + T(n_k) & \text{if } n > n_0 \\ + \cos t \text{ for divide and combine} \end{cases}$$

Special case:
$$k=2$$
, $n_1=n_2=n_2/2$

- cost for divide and combine: DC(n)
- T(1) = c

•
$$T(n) = 2 \cdot T(n/2) + \mathrm{DC}(n)$$

Mergesort:
$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

FREBURG

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le c$$

Guess the solution by repeated substitution:

$$T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n$$

$$\leq 2 \cdot \left(2T\left(\frac{n}{4}\right) + c \cdot \frac{n}{2}\right) + c \cdot n = 4 \cdot T\left(\frac{n}{4}\right) + 2c \cdot n$$

$$\leq 4 \cdot \left(2T\left(\frac{n}{8}\right) + c \cdot \frac{n}{4}\right) + 2c \cdot n = 8 \cdot T\left(\frac{n}{8}\right) + 3c \cdot n$$

$$\vdots$$

$$\leq 2^{k} \cdot T\left(\frac{n}{2^{k}}\right) + k \cdot cn$$

$$\vdots$$

$$\leq n \cdot T(1) + (\log_{2} n) \cdot cn \leq cn \cdot (1 + \log_{2} n)$$

Algorithm Theory

Recurrence relation:

 $T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le c$

Verify by induction:

Guess: $T(n) \leq cn \cdot (1 + \log_2 n)$

- For simplicity, assume that *n* is a power of 2

Induction Base: $T(1) \le c \cdot 1 \cdot (1 + \log_2 1) = c$

Induction Step:

$$T(n) \leq 2 \cdot T\left(\frac{n}{2}\right) + cn$$
Plug in induction
hypothesis for $T(n/2)$.
$$T(n) \leq 2 \cdot \left(c \cdot \frac{n}{2} \cdot \left(1 + \log_2 \frac{n}{2}\right)\right) + cn = cn \cdot (1 + \log_2 n)$$

$$= \log_2 n$$

$$= c \cdot n \cdot \log_2 n$$
Fabian Kuhn

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le c$$

Guess the solution by drawing the recursion tree :

Total time: $(1 + \log_2 n) \cdot cn$

Recurrence relation

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^c), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Obtain Intuition by Looking at Recursion:

Algorithm Theory

Fabian Kuhn

Recurrence relation

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^c), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Obtain Intuition by Looking at Recursion:

Rec. Level	Subpr. Size	#Subproblems	Time
1	n	1	$1 \cdot n^c$
2	n_{b}	а	$a \cdot (n/b)^c = \frac{a}{b^c} \cdot n^c$
3	$n_{b^{2}}$	a^2	$a^2 \cdot \left(\frac{n}{b^2}\right)^c = \left(\frac{a}{b^c}\right)^2 \cdot n^c$
• • •	•	•	• • •
$\log_b n$	1	$a^{\log_b n}$	$a^{\log_b n} \cdot 1 = n^{\log_b a}$

More General Recurrence Relations

Recurrence relation

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^c), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Obtain Intuition by Looking at Recursion Tree:

Observations:

- Time grows/shrinks by factor (a/b^c) per level
- If $a_{hc} < 1$ ($c > \log_{b} a$), first level dominates: $T(n) = O(n^c)$
- If $a_{hc} > 1$ ($c < \log_b a$), last level dominates: $T(n) = O(n^{\log_b a})$
- If $a_{hc} = 1$ ($c = \log_b a$), all levels are the same: $T(n) = O(n^c \cdot \log n)$

$$(n/b)^{c} = \frac{a}{b^{c}} \cdot n^{c}$$
$$)^{c} = \left(\frac{a}{b^{c}}\right)^{2} \cdot n^{c}$$
$$\vdots$$
$$n \cdot 1 = n^{\log_{b} a}$$

 $n \cdot 1$

 $1 \cdot n^c$

Recurrence relation

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Cases

•
$$f(n) = O(n^c), \ c < \log_b a$$

 $T(n) = \Theta(n^{\log_b a})$

•
$$f(n) = \Omega(n^c), \ c > \log_b a$$

 $T(n) = \Theta(f(n))$

•
$$f(n) = \Theta(n^c \cdot \log^k n), \ c = \log_b a$$

 $T(n) = \Theta(n^c \cdot \log^{k+1} n)$

Algorithm Theory