$11 F$

 Algorithm Theory

 Algorithm Theory}

Chapter 1 Divide and Conquer

Part I:

Introduction \& Running Time Analysis

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design principle
- Examples from basic alg. \& data structures class:
- Sorting: Mergesort, Quicksort
- Binary search
- Further examples
- Median
- Compairing orders
- Convex hull / Delaunay triangulation / Voronoi diagram
- Closest pair of points
- Line intersections
- Polynomial multiplication / FFT

Example 1: Quicksort

function Quick (A : array): array
\{returns the sorted array A \}
begin
if $\operatorname{size}(A) \leq 1$ then return A
else $\{$ choose pivot element v in A;
partition A into A_{ℓ} with elements $\geq v$,
and A_{r} with elements $\geq v$

return	Quick $\left(A_{\ell}\right)$	v

end;

Example 2: Mergesort

Divide and Conquer: Highlevel Principle

Divide-and-conquer method for solving a problem instance of size n :

QS	MS
choose partition	divide in middle
recursion	recursion merge sorted halves

Analysis

Recurrence relation:

- $\boldsymbol{T}(\boldsymbol{n})$: max. number of steps necessary for solving an instance of size n
- $T(n)= \begin{cases}c & \text { if } n \leq n_{0} \\ T\left(n_{1}\right)+\cdots+T\left(n_{k}\right) & \text { if } n>n_{0} \\ + \text { cost for divide and combine } & \end{cases}$

Special case: $k=2, n_{1}=n_{2}=\boldsymbol{n} / 2$

- cost for divide and combine: $\mathrm{DC}(n)$
- $T(1)=c$
- $T(n)=2 \cdot T(n / 2)+\mathrm{DC}(n)$

Mergesort: $T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n)$

Analysis Example: Mergesort

Recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c n, \quad T(1) \leq c
$$

Guess the solution by repeated substitution:

$$
\begin{aligned}
T(n) & \leq 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n \\
& \leq 2 \cdot\left(2 T\left(\frac{n}{4}\right)+c \cdot \frac{n}{2}\right)+c \cdot n \quad=4 \cdot T\left(\frac{n}{4}\right)+2 c \cdot n \\
& \leq 4 \cdot\left(2 T\left(\frac{n}{8}\right)+c \cdot \frac{n}{4}\right)+2 c \cdot n=8 \cdot T\left(\frac{n}{8}\right)+3 c \cdot n \\
& \vdots \\
& \leq 2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot c n \\
& \vdots \\
& \leq n \cdot T(1)+\left(\log _{2} n\right) \cdot c n \leq c n \cdot\left(1+\log _{2} n\right)
\end{aligned}
$$

Analysis Example: Mergesort

Recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c n, \quad T(1) \leq c
$$

Verify by induction:
Guess: $\boldsymbol{T}(n) \leq \boldsymbol{c n} \cdot\left(1+\log _{2} n\right)$

- For simplicity, assume that n is a power of 2

Induction Base: $T(1) \leq c \cdot 1 \cdot\left(1+\log _{2} 1\right)=c$
Induction Step:

$$
\begin{aligned}
T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+c n \quad \begin{array}{c}
\text { Plug in induction } \\
\text { hypothesis for } T(n / 2)
\end{array} \\
T(n) \leq 2 \cdot(c \cdot \frac{n}{2} \cdot(\underbrace{1+\log _{2} \frac{n}{2}}_{=c \cdot n \cdot \log _{2} n}))+c n=c n \cdot\left(1+\log _{2} n\right)
\end{aligned}
$$

Analysis Example: Mergesort

Recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c n, \quad T(1) \leq c
$$

Guess the solution by drawing the recursion tree :

Total time: $\left(1+\log _{2} n\right) \cdot c n$

More General Recurrence Relations

Recurrence relation

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{c}\right), \quad T(n)=O(1) \text { for } n \leq n_{0}
$$

Obtain Intuition by Looking at Recursion:

More General Recurrence Relations

Recurrence relation

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{c}\right), \quad T(n)=O(1) \text { for } n \leq n_{0}
$$

Obtain Intuition by Looking at Recursion:

Rec. Level	Subpr. Size	\#Subproblems	Time
1	n	1	
2	n / b	a	$a \cdot(n / b)^{c}=\frac{a}{b^{c}} \cdot n^{c}$
3	n / b^{2}	a^{2}	$a^{2} \cdot\left(n / b^{2}\right)^{c}=\left(\frac{a}{b^{c}}\right)^{2} \cdot n^{c}$
\vdots	\vdots	\vdots	\vdots
$\log _{b} n$	1	$a^{\log _{b} n}$	$a^{\log _{b} n} \cdot 1=n^{\log _{b} a}$

More General Recurrence Relations

Recurrence relation

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{c}\right), \quad T(n)=O(1) \text { for } n \leq n_{0}
$$

Obtain Intuition by Looking at Recursion Tree:

Observations:

- Time grows/shrinks by factor $\left(a / b^{c}\right)$ per level
- If $a /{ }_{b} c<1\left(c>\log _{b} a\right)$, first level dominates:

$$
T(n)=O\left(n^{c}\right)
$$

$$
(n / b)^{c}=\frac{a}{b^{c}} \cdot n^{c}
$$

- If $a / b^{c}>1\left(c<\log _{b} a\right)$, last level dominates:

$$
T(n)=O\left(n^{\log _{b} a}\right)
$$

- If $a / b^{c}=1\left(c=\log _{b} a\right)$, all levels are the same:

$$
T(n)=O\left(n^{c} \cdot \log n\right)
$$

$$
\begin{gathered}
)^{c}=\left(\frac{a}{b^{c}}\right)^{2} \cdot n^{c} \\
\vdots \\
n \cdot 1=n^{\log _{b} a}
\end{gathered}
$$

Recurrence Relations: Master Theorem

Recurrence relation

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n), \quad T(n)=O(1) \text { for } n \leq n_{0}
$$

Cases

- $f(n)=O\left(n^{c}\right), c<\log _{b} a$

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

- $f(n)=\Omega\left(n^{c}\right), c>\log _{b} a$

$$
\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{\Theta}(\boldsymbol{f}(n))
$$

- $f(n)=\Theta\left(n^{c} \cdot \log ^{k} n\right), c=\log _{b} a$

$$
T(n)=\Theta\left(n^{c} \cdot \log ^{k+1} n\right)
$$

