
Algorithm Theory

Chapter 1

Divide and Conquer

Part II:
Comparing Orders & Closest Pair of Points

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Comparing Orders

• Many web systems maintain user preferences / rankings on
things like books, movies, restaurants, …

• Collaborative filtering:
– Predict user taste by comparing rankings of different users.

– If the system finds users with similar tastes, it can make
recommendations (e.g., Amazon)

• A key problem: compare two rankings
– Intuitively, two rankings (of movies) are more similar, the more pairs are

ordered in the same way

– Label the first user’s movies from 1 to 𝑛 according to ranking

– Order labels according to second user’s ranking

– How far is this from the ascending order (of the first user)?

Algorithm Theory Fabian Kuhn 3

Number of Inversions

Formal problem:

• Given: array 𝐴 = [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛] of 𝑛 elements

• Objective: Compute number of inversions 𝐼

𝐼 ≔ 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 𝑎𝑖 > 𝑎𝑗

• Example: 𝐴 = [4 , 1 , 5 , 2 , 7 , 10 , 6]

• Naïve solution:
– Go through all pairs and check if it is an inversion

– Time = 𝑂 #pairs = 𝑂(𝑛2)

5 inversions

Algorithm Theory Fabian Kuhn 4

Divide and Conquer Solution

1. Divide array into 2 equal parts 𝐴ℓ and 𝐴𝑟

2. Recursively compute #inversions in 𝐴ℓ and 𝐴𝑟

3. Combine: add #pairs 𝑎𝑖 ∈ 𝐴ℓ, 𝑎𝑗 ∈ 𝐴𝑟 such that 𝑎𝑖 > 𝑎𝑗

𝐴

𝐴ℓ 𝐴𝑟

𝐴ℓ 𝐴𝑟𝑎𝑖 𝑎𝑗

Combine: Count #pairs 𝑎𝑖 ∈ 𝐴ℓ and 𝑎𝑗 ∈ 𝐴𝑟 for which 𝑎𝑖 > 𝑎𝑗Combine: Count #pairs 𝑎𝑖 ∈ 𝐴ℓ and 𝑎𝑗 ∈ 𝐴𝑟 for which 𝑎𝑖 > 𝑎𝑗

inversion not computed recursively

Algorithm Theory Fabian Kuhn 5

Combine Step

Assume 𝐴ℓ and 𝐴𝑟 are sorted

Idea:

• Maintain pointers 𝑖 and 𝑗 to go through the sorted parts

• While going through the sorted parts, we count the number of
inversions between the parts

Invariant:

• At each point in time, all inversions involving some element left
of 𝑖 (in 𝐴ℓ) or left of 𝑗 (in 𝐴𝑟) have been counted
– and all others still have to be counted...

Guaranteeing Sorted Order:

• While going through the parts, also merge the parts into one
sorted order (like in Mergesort).

𝐴ℓ 𝐴𝑟
𝑎𝑖 𝑎𝑗

𝒊 𝒋

Algorithm Theory Fabian Kuhn 6

Combine Step

Assume 𝐴ℓ and 𝐴𝑟 are sorted

• Pointers 𝑖 and 𝑗, initially pointing to first elements of 𝐴ℓ and 𝐴𝑟

• If 𝑎𝑖 ≤ 𝑎𝑗:
– 𝑎𝑖 is smallest among the remaining elements

– No inversion of 𝑎𝑖 and one of the remaining elements

– Do not change count

• If 𝑎𝑗 < 𝑎𝑖:
– 𝑎𝑗 is smallest among the remaining elements

– 𝑎𝑗 is smaller than all remaining elements in 𝐴ℓ

– Add number of remaining elements in 𝐴ℓ to count

• Increment pointer, pointing to the smaller element

𝐴ℓ 𝐴𝑟
𝑎𝑖 𝑎𝑗

𝒊 𝒋

Algorithm Theory Fabian Kuhn 7

• Assume 𝐴ℓ and 𝐴𝑟 are sorted

• Count:

3 5 8 13 14 18 24 25 30 6 7 9 19 21 23 28 32 33

Combine Step: Example

3 5 8 13 14 186 7 9 19 21

0 +7 +7+6 +3 +3+3

𝑖 𝑗

Algorithm Theory Fabian Kuhn 8

Comparing Orders : Summary

• We need sub-sequences in sorted order

• Combine step is like merging in merge sort

• Idea: Solve sorting and #inversions at the same time!
1. Partition 𝐴 into two equal parts 𝐴ℓ and 𝐴𝑟

2. Recursively compute #inversions and
recursively sort 𝐴ℓ and 𝐴𝑟

3. Merge 𝐴ℓ and 𝐴𝑟 to sorted sequence, at the same time, compute
number of inversions between elements 𝑎𝑖 in 𝐴ℓ and 𝑎𝑗 in 𝐴𝑟

Time for divide and combine: 𝑶(𝒏)

• Need to go over all Τ𝑛 2 indices in 𝐴ℓ and
all Τ𝑛 2 indices in 𝐴𝑟 once.

Time for divide and combine: 𝑶(𝒏)

• Need to go over all Τ𝑛 2 indices in 𝐴ℓ and
all Τ𝑛 2 indices in 𝐴𝑟 once.

Algorithm Theory Fabian Kuhn 9

Number of Inversion: Analysis

Recurrence relation:

𝑇 𝑛 ≤ 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐 ⋅ 𝑛, 𝑇 1 ≤ 𝑐

Same recurrence relation as for mergesort:

𝑻 𝒏 = 𝑶(𝒏 ⋅ 𝐥𝐨𝐠𝒏)

Algorithm Theory Fabian Kuhn 10

Geometric divide-and-conquer

Closest Pair Problem: Given a set 𝑆 of 𝑛 points, find a pair of
points with the smallest distance.

Naïve solution:

• Go over all pairs of points, compute distance, take minimum

• Time: 𝑂 𝑛2

Algorithm Theory Fabian Kuhn 11

Divide-and-Conquer Solution

0. Sort points by 𝑥-coordinate
1. Divide: Divide 𝑆 into two equal sized sets 𝑆ℓ und 𝑆𝑟.
2. Conquer: 𝑑ℓ = mindist(𝑆ℓ) 𝑑𝑟 = mindist 𝑆𝑟
3. Combine: 𝑑ℓ𝑟 = min 𝑑 𝑎, 𝑏 | 𝑎 ∈ 𝑆ℓ, 𝑏 ∈ 𝑆𝑟

return min{𝑑ℓ, 𝑑𝑟 , 𝑑ℓ𝑟}

𝑆
𝑑ℓ

𝑑ℓ𝑟 𝑑𝑟

𝑆𝑟𝑆ℓ

Remark: only need 𝑑ℓ𝑟
if 𝑑ℓ𝑟 < min 𝑑ℓ, 𝑑𝑟

Remark: only need 𝑑ℓ𝑟
if 𝑑ℓ𝑟 < min 𝑑ℓ, 𝑑𝑟

Algorithm Theory Fabian Kuhn 12

𝑑 = min{𝑑ℓ, 𝑑𝑟}

𝑑

Divide-and-conquer solution

𝑆𝑟

𝑝

𝑆

𝑆ℓ
𝑑 𝑑

1. Divide: Divide 𝑆 into two equal sized sets 𝑆ℓ und 𝑆𝑟.
2. Conquer: 𝑑ℓ = mindist(𝑆ℓ) 𝑑𝑟 = mindist 𝑆𝑟
3. Combine: 𝑑ℓ𝑟 = min 𝑑 𝑎, 𝑏 | 𝑎 ∈ 𝑆ℓ, 𝑏 ∈ 𝑆𝑟

return min{𝑑ℓ, 𝑑𝑟 , 𝑑ℓ𝑟}

Computation of 𝒅ℓ𝒓 if 𝒅ℓ𝒓 < 𝐦𝐢𝐧 𝒅ℓ, 𝒅𝒓

Algorithm Theory Fabian Kuhn 13

Combine step

𝑑 𝑑

𝑑 = min{𝑑ℓ , 𝑑𝑟}

𝑆

𝑆ℓ 𝑆𝑟

𝑝1

𝑝3

𝑝4

𝑝2

𝑑
ൗ𝑑

2

𝒑

𝒑

𝑑

𝑑

Algorithm Theory Fabian Kuhn 14

Combine step

1. Consider only points within distance ≤ 𝑑 of the bisection
line, in the order of increasing 𝑦-coordinates.

2. For each point 𝑝 consider all points 𝑞 on the other side which
are within 𝑦-distance less than 𝑑

3. There are at most 4 such points.
ൗ𝑑

2

𝒑

𝑑

𝑑

Algorithm Theory Fabian Kuhn 15

Implementation

• Initially sort the points in 𝑆 in order of increasing 𝑥-coordinates

• While computing closest pair, also sort 𝑆 according to 𝑦-coord.
– Partition 𝑆 into 𝑆ℓ and 𝑆𝑟, solve and sort sub-problems recursively

– Merge to get sorted 𝑆 according to 𝑦-coordinates

– Center points: points within 𝑥-distance 𝑑 = min 𝑑ℓ, 𝑑𝑟 of center

– Go through center points in 𝑆 in order of incr. 𝑦-coordinates

• Each point only has to be compared to 7 next center points in the sorted
order of all center points
(when including the center points on the same side)

𝑑

𝑑

ൗ𝑑
2

𝒑

Algorithm Theory Fabian Kuhn 16

Running Time

Recurrence relation:

𝑇 𝑛 = 2 ⋅ 𝑇 Τ𝑛 2 + 𝑐 ⋅ 𝑛, 𝑇 1 ≤ 𝑐

Solution:

• Same as for computing number of number of inversions,
mergesort (and many others…)

𝑇 𝑛 = 𝑂(𝑛 ⋅ log 𝑛)

