$11 F$

 Algorithm Theory

 Algorithm Theory}

Chapter 1 Divide and Conquer

Part II:

Comparing Orders \& Closest Pair of Points

Fabian Kuhn

Comparing Orders

- Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...
- Collaborative filtering:
- Predict user taste by comparing rankings of different users.
- If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- A key problem: compare two rankings
- Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
- Label the first user's movies from 1 to n according to ranking
- Order labels according to second user's ranking
- How far is this from the ascending order (of the first user)?

Number of Inversions

Formal problem:

- Given: array $A=\left[a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right]$ of n elements
- Objective: Compute number of inversions I

$$
\left.I:=\mid\left\{0 \leq i<j \leq n \mid a_{i}>a_{j}\right)\right\} \mid
$$

- Example: $A=[\underbrace{4}, 1,5,2, \underbrace{7}, 10,6]$
- Naïve solution:
- Go through all pairs and check if it is an inversion
- Time $=O(\#$ pairs $)=O\left(n^{2}\right)$

Divide and Conquer Solution

1. Divide array into 2 equal parts A_{ℓ} and A_{r}
2. Recursively compute \#inversions in A_{ℓ} and A_{r}
3. Combine: add \#pairs $a_{i} \in A_{\ell}, a_{j} \in A_{r}$ such that $a_{i}>a_{j}$

Combine: Count \#pairs $a_{i} \in A_{\ell}$ and $a_{j} \in A_{r}$ for which $a_{i}>a_{j}$

Combine Step

Assume A_{ℓ} and A_{r} are sorted

$-a_{i}$	A_{ℓ}
\boldsymbol{i}	
i	
i	

- Maintain pointers i and j to go through the sorted parts
- While going through the sorted parts, we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of i (in A_{ℓ}) or left of j (in A_{r}) have been counted
- and all others still have to be counted...

Guaranteeing Sorted Order:

- While going through the parts, also merge the parts into one sorted order (like in Mergesort).

Combine Step

Assume A_{ℓ} and A_{r} are sorted

- Pointers i and j, initially pointing to first elements of A_{ℓ} and A_{r}
- If $a_{i} \leq a_{j}$:
$-a_{i}$ is smallest among the remaining elements
- No inversion of a_{i} and one of the remaining elements
- Do not change count
- If $a_{j}<a_{i}$:
$-a_{j}$ is smallest among the remaining elements
$-a_{j}$ is smaller than all remaining elements in A_{ℓ}
- Add number of remaining elements in A_{ℓ} to count
- Increment pointer, pointing to the smaller element

Combine Step: Example

- Assume A_{ℓ} and A_{r} are sorted

3	5	6	7	8	9	13	14	18	19	21							

- Count: $0+7+7+6+3+3+3$

Comparing Orders : Summary

- We need sub-sequences in sorted order
- Combine step is like merging in merge sort
- Idea: Solve sorting and \#inversions at the same time!

1. Partition A into two equal parts A_{ℓ} and A_{r}
2. Recursively compute \#inversions and recursively sort A_{ℓ} and A_{r}
3. Merge A_{ℓ} and A_{r} to sorted sequence, at the same time, compute number of inversions between elements a_{i} in A_{ℓ} and a_{j} in A_{r}

Time for divide and combine: $\boldsymbol{O}(\boldsymbol{n})$

- Need to go over all $n / 2$ indices in A_{ℓ} and all $n / 2$ indices in A_{r} once.

Number of Inversion: Analysis

Recurrence relation:

$$
T(n) \leq 2 \cdot T(n / 2)+c \cdot n, \quad T(1) \leq c
$$

Same recurrence relation as for mergesort:

$$
T(n)=O(n \cdot \log n)
$$

Geometric divide-and-conquer

Closest Pair Problem: Given a set S of n points, find a pair of points with the smallest distance.

$$
0
$$

Naïve solution:

- Go over all pairs of points, compute distance, take minimum
- Time: $O\left(n^{2}\right)$

Divide-and-Conquer Solution

0. Sort points by x-coordinate
1. Divide: Divide S into two equal sized sets S_{ℓ} und S_{r}.
2. Conquer: $d_{\ell}=\operatorname{mindist}\left(S_{\ell}\right) \quad d_{r}=\operatorname{mindist}\left(S_{r}\right)$
3. Combine: $d_{\ell r}=\min \left\{d(a, b) \mid a \in S_{\ell}, b \in S_{r}\right\}$
return $\min \left\{d_{\ell}, d_{r}, d_{\ell r}\right\}$

Divide-and-conquer solution

1. Divide: Divide S into two equal sized sets S_{ℓ} und S_{r}.
2. Conquer: $d_{\ell}=\operatorname{mindist}\left(S_{\ell}\right) \quad d_{r}=\operatorname{mindist}\left(S_{r}\right)$
3. Combine: $d_{\ell r}=\min \left\{d(a, b) \mid a \in S_{\ell}, b \in S_{r}\right\}$
return $\min \left\{d_{\ell}, d_{r}, d_{\ell r}\right\}$
Computation of $\boldsymbol{d}_{\ell r}$ if $\boldsymbol{d}_{\ell r}<\min \left\{\boldsymbol{d}_{\ell}, \boldsymbol{d}_{\boldsymbol{r}}\right\}$

Combine step

Combine step

1. Consider only points within distance $\leq d$ of the bisection line, in the order of increasing y-coordinates.
2. For each point p consider all points q on the other side which are within y-distance less than d
3. There are at most 4 such points.

Implementation

- Initially sort the points in S in order of increasing x-coordinates
- While computing closest pair, also sort S according to y-coord.
- Partition S into S_{ℓ} and S_{r}, solve and sort sub-problems recursively
- Merge to get sorted S according to y-coordinates
- Center points: points within x-distance $d=\min \left\{d_{\ell}, d_{r}\right\}$ of center
- Go through center points in S in order of incr. y-coordinates
- Each point only has to be compared to 7 next center points in the sorted order of all center points (when including the center points on the same side)

Running Time

Recurrence relation:

$$
T(n)=2 \cdot T(n / 2)+c \cdot n, \quad T(1) \leq c
$$

Solution:

- Same as for computing number of number of inversions, mergesort (and many others...)

$$
T(n)=O(n \cdot \log n)
$$

