

Algorithm Theory

Chapter 1 Divide and Conquer

Part II: Comparing Orders & Closest Pair of Points

Comparing Orders

- Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...
- Collaborative filtering:
 - Predict user taste by comparing rankings of different users.
 - If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- A key problem: compare two rankings
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from 1 to n according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Formal problem:

- **Given**: array $A = [a_1, a_2, a_3, \dots, a_n]$ of n elements
- **Objective**: Compute number of inversions *I*

 $I \coloneqq \left| \left\{ 0 \le i < j \le n \mid a_i > a_j \right) \right\} \right|$

- Example: $A = \begin{bmatrix} 4 & , 1 & , 5 & , 2 & , 7 & , 10 & , 6 \end{bmatrix}$ 5 inversions
- Naïve solution:
 - Go through all pairs and check if it is an inversion
 - Time = $O(\# pairs) = O(n^2)$

Divide and Conquer Solution

- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_{ℓ} and A_r
- 3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$

Combine: Count #pairs $a_i \in A_\ell$ and $a_j \in A_r$ for which $a_i > a_j$

Combine Step

Assume A_{ℓ} and A_r are sorted

- Maintain pointers *i* and *j* to go through the sorted parts
- While going through the sorted parts, we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of i (in A_{ℓ}) or left of j (in A_r) have been counted
 - and all others still have to be counted...

Guaranteeing Sorted Order:

• While going through the parts, also merge the parts into one sorted order (like in Mergesort).

Algorithm Theory

Combine Step

Assume A_{ℓ} and A_r are sorted

- Pointers *i* and *j*, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i \leq a_j$:
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_j < a_i$:
 - $-a_j$ is smallest among the remaining elements
 - $-a_i$ is smaller than all remaining elements in A_ℓ
 - Add number of remaining elements in A_{ℓ} to count
- Increment pointer, pointing to the smaller element

Algorithm Theory

Combine Step: Example

• Count: 0 + 7 + 7 + 6 + 3 + 3 + 3

Comparing Orders : Summary

- We need sub-sequences in sorted order
- Combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_{ℓ} and A_r
 - 2. Recursively compute #inversions and recursively sort A_{ℓ} and A_r
 - 3. Merge A_{ℓ} and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_{ℓ} and a_j in A_r

Time for divide and combine: O(n)

• Need to go over all n/2 indices in A_{ℓ} and all n/2 indices in A_r once.

Recurrence relation:

$$T(n) \le 2 \cdot T(n/2) + c \cdot n, \qquad T(1) \le c$$

Same recurrence relation as for mergesort:

 $T(n) = O(n \cdot \log n)$

Geometric divide-and-conquer

Closest Pair Problem: Given a set *S* of *n* points, find a pair of points with the smallest distance.

Naïve solution:

- Go over all pairs of points, compute distance, take minimum
- Time: $O(n^2)$

Algorithm Theory

Divide-and-Conquer Solution

Divide-and-conquer solution

- **1.** Divide: Divide S into two equal sized sets S_{ℓ} und S_r .
- **2.** Conquer: $d_{\ell} = \text{mindist}(S_{\ell})$ $d_r = \text{mindist}(S_r)$
- **3. Combine:** $d_{\ell r} = \min\{d(a, b) \mid a \in S_{\ell}, b \in S_r\}$ return $\min\{d_{\ell}, d_r, d_{\ell r}\}$

Computation of $d_{\ell r}$ if $d_{\ell r} < \min\{d_\ell, d_r\}$

Combine step

- 1. Consider only points within distance $\leq d$ of the bisection line, in the order of increasing y-coordinates.
- 2. For each point *p* consider all points *q* on the other side which are within *y*-distance less than *d*
- 3. There are at most 4 such points.

Implementation

- Initially sort the points in *S* in order of increasing *x*-coordinates
- While computing closest pair, also sort *S* according to *y*-coord.
 - Partition S into S_{ℓ} and S_r , solve and sort sub-problems recursively
 - Merge to get sorted S according to y-coordinates
 - Center points: points within x-distance $d = \min\{d_{\ell}, d_r\}$ of center
 - Go through center points in S in order of incr. y-coordinates
 - Each point only has to be compared to 7 next center points in the sorted order of all center points (when including the center points on the same side) d_{i}

(when including the center points on the same side) $d/\sqrt{2}$ $d \downarrow p$

Recurrence relation:

$$T(n) = 2 \cdot T(n/2) + c \cdot n, \qquad T(1) \le c$$

Solution:

• Same as for computing number of number of inversions, mergesort (and many others...)

$$T(n) = O(n \cdot \log n)$$