



# **Algorithm Theory**

# Chapter 1 Divide and Conquer

# Part IV: Fast Polynomial Multiplication 1

## Representation of Polynomials



#### **Coefficient Representation:**

• Polynomial of degree n - 1 defined by coefficients  $a_0, \dots, a_{n-1}$ :  $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$ 

#### **Point-value Representation:**

- Polynomial p(x) of degree n 1 is given by n point-value pairs:  $p = \{(x_0, p(x_0)), (x_1, p(x_1)), \dots, (x_{n-1}, p(x_{n-1}))\}$ where  $x_i \neq x_j$  for  $i \neq j$ .
- Example: The polynomial

$$p(x) = 3x^3 - 15x^2 + 18x = 3x(x-2)(x-3)$$

is uniquely defined by the four point-value pairs (0,0), (1,6), (2,0), (3,0).

**Operations: Coefficient Representation** 



 $p(x) = a_{n-1}x^{n-1} + \dots + a_0, \qquad q(x) = b_{n-1}x^{n-1} + \dots + b_0$ 

**Evaluation:** Horner's method: Time O(n)

#### Addition:

$$p(x) + q(x) = (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_0 + b_0)$$

• Time: *O*(*n*)

#### Multiplication:

$$p(x) \cdot q(x) = c_{2n-2}x^{2n-2} + \dots + c_0$$
, where  $c_i = \sum_{j=0}^{i} a_j b_{i-j}$ 

- Naïve solution: Need to compute product  $a_i b_j$  for all  $0 \le i, j \le n$
- Time: Naïve alg.  $O(n^2)$  Karatsuba Alg.  $O(n^{1.58496...})$

Algorithm Theory

## **Operations: Point-Value Representation**



$$p = \{ (x_0, p(x_0)), \dots, (x_{n-1}, p(x_{n-1})) \}$$
  
$$q = \{ (x_0, q(x_0)), \dots, (x_{n-1}, q(x_{n-1})) \}$$

• Note: We use the same points  $x_0, \dots, x_{n-1}$  for both polynomials.

#### Addition:

$$p + q = \{ (x_0, p(x_0) + q(x_0)), \dots, (x_{n-1}, p(x_{n-1}) + q(x_{n-1})) \}$$

• Time: *O*(*n*)

#### Multiplication:

$$p \cdot q = \{ (x_0, p(x_0) \cdot q(x_0)), \dots, (x_{2n-2}, p(x_{2n-2}) \cdot q(x_{2n-2})) \}$$

- Time: *O*(*n*)
- **Remark:** Need both polynomials at (the same) 2n 1 points.

#### **Evaluation:** Polynomial interpolation can be done in $O(n^2)$

Algorithm Theory

## **Operations on Polynomials**



#### Cost depending on representation:

|                | Coefficient                   | Point-Value           |
|----------------|-------------------------------|-----------------------|
| Evaluation     | <b>0</b> ( <b>n</b> )         | $O(n^2)$              |
| Addition       | <b>0</b> ( <b>n</b> )         | <b>0</b> ( <b>n</b> ) |
| Multiplication | <b>O</b> (n <sup>1.58</sup> ) | <b>0</b> ( <b>n</b> ) |
|                | default<br>representation     | Can we improve this?  |
|                |                               |                       |



# Faster Polynomial Multiplication?



Multiplication is fast when using the point-value representation

**Idea** to compute  $p(x) \cdot q(x)$  (for polynomials of degree < n):



# **Coefficients to Point-Value Representation**



N > 2n - 1

We will fix X later.

**Given:** Polynomial p(x) by the coefficient vector  $(a_0, a_1, ..., a_{N-1})$ 

- **Goal:** Compute p(x) for all x in a given set X
  - Where X is of size |X| = N
  - Assume that N is a power of 2

#### **Divide and Conquer Approach**

- Divide p(x) of degree N 1 (N is even) into 2 polynomials of degree  $N/_2 1$  differently than in Karatsuba's algorithm
- $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1}$  (even coeff.)  $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1}$  (odd coeff.)

We call the variable y because we will not plug in x into  $p_0$  and  $p_1$ 

Algorithm Theory

# **Coefficients to Point-Value Representation**



**Goal:** Compute p(x) for all x in a given set X of size |X| = N

- Divide p(x) of degr. N 1 into 2 polynomials of degr.  $N/_2 1$ 
  - $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1} \quad \text{(even coeff.)}$  $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1} \quad \text{(odd coeff.)}$

#### Let's first look at the "combine" step:

- We need to compute p(x) for all x ∈ X after recursive calls for polynomials p<sub>0</sub> and p<sub>1</sub>:
- Plug  $y = x^2$  into  $p_0(y)$  and  $p_1(y)$ :

$$p_0(x^2) = a_0 + a_2 x^2 + a_4 x^4 + \dots + a_{N-2} x^{N-2}$$
  

$$p_1(x^2) = a_1 + a_3 x^2 + a_5 x^4 + \dots + a_{N-1} x^{N-2}$$
  

$$p(x) = p_0(x^2) + x \cdot p_1(x^2)$$

# **Coefficients to Point-Value Representation**



**Goal:** Compute p(x) for all x in a given set X of size |X| = N

- Divide p(x) of degr. N 1 into 2 polynomials of degr.  $N/_2 1$ 
  - $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1} \quad \text{(even coeff.)}$  $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1} \quad \text{(odd coeff.)}$

#### Let's first look at the "combine" step:

$$\forall x \in X: \quad p(x) = p_0(x^2) + x \cdot p_1(x^2)$$

- Goal: recursively compute  $p_0(y)$  and  $p_1(y)$  for all  $y \in X^2$ - Where  $X^2 \coloneqq \{x^2 : x \in X\}$
- Generally, we have  $|X^2| = |X|$

### Analysis



Let's get a recurrence recurrence for the given algorithm:

Time for polynomial of degree N with set X: T(N, |X|)

$$T(N, |X|) = 2 \cdot T(\frac{N}{2}, |X^2|) + O(N + |X|)$$

Assume that  $|X^2| = |X| = N$ :

$$T(N,N) = 2 \cdot T\left(\frac{N}{2}, N\right) + O(N) = \dots = N \cdot \left(T(1,N) + O(N)\right)$$
$$T(1,N) = O(N)$$

Therefore, we get  $T(N, |X|) = O(N^2)$ .

• We need  $|X^2| < |X|$  to get a faster algorithm!



In order to have a faster algorithm, we need  $|X^2| < |X|$ :

•  $|X^2| < |X|$  if X contains values x, x' such that  $x^2 = x'^2$ :

$$X = \{-1, +1\} \implies X^2 = \{+1\}$$

• We also need 
$$|(X^2)^2| = |X^4| < |X^2|$$
:

- Can we get a set Y of size 4 such that  $Y^2 = \{-1, +1\}$ ?

- Complex numbers C:
  - Define imaginary constant *i* s.t.  $i^2 = -1$
  - Complex numbers:  $\mathbb{C} = \{a + i \cdot b \mid a, b \in \mathbb{R}\}$
- $Y = \{-1, +1, -i, +i\} \implies Y^2 = \{-1, +1\}$
- $\forall x \in \mathbb{C} \setminus \{0\}$ , there are 2 numbers  $y, z \in \mathbb{C}$  s.t.  $y^2 = z^2 = x$

### Choice of *X*



• Select points  $x_0, x_1, \dots, x_{N-1}$  to evaluate p and q in a clever way

Consider the *N* complex roots of unity:

Principle root of unity:  $\omega_N = e^{2\pi i/N}$  $\omega_8^2$  $\left(i=\sqrt{-1}, \qquad e^{2\pi i}=1\right)$  $\omega_8^1$  $\omega_{8}^3$  $\omega_8^4$  $\omega_8^0 = 1$ Powers of  $\omega_N$  (roots of unity):  $1 = \omega_{N}^{0}, \omega_{N}^{1}, ..., \omega_{N}^{N-1}$  $\omega_8^7$  $\omega_8^5$  $\omega_8^6$ Note:  $\omega_N^k = e^{2\pi i k/N} = \cos \frac{2\pi k}{N} + i \cdot \sin \frac{2\pi k}{N}$ 



#### **Cancellation Lemma:**

• For all integers n > 0,  $k \ge 0$ , and d > 0, we have:

$$\omega_{dn}^{dk} = \omega_n^k$$
,  $\omega_n^{k+n} = \omega_n^k$ 

**Proof:** Recall that  $\omega_n = e^{2\pi i/n}$ ,  $e^{2\pi i} = 1$ 

$$\omega_{dn}^{dk} = \left(e^{\frac{2\pi i}{dn}}\right)^{dk} = e^{\frac{2\pi i}{dn} \cdot dk} = e^{\frac{2\pi i}{n} \cdot k} = \omega_n^k$$

$$\omega_n^{k+n} = \left(e^{\frac{2\pi i}{n}}\right)^{k+n} = e^{\frac{2\pi i}{\mathbf{d}n}\cdot(k+n)} = e^{\frac{2\pi i}{n}\cdot k} \cdot e^{2\pi i} = \omega_n^k$$





Claim: If 
$$X = \left\{ \omega_{2k}^{j} : j \in \{0, ..., 2k - 1\} \right\}$$
, we have  
 $X^{2} = \left\{ \omega_{k}^{j} : j \in \{0, ..., k - 1\} \right\}$ ,  $|X^{2}| = \frac{|X|}{2}$ 

#### **Proof:**

- We just showed:  $\omega_{dn}^{dk} = \omega_n^k$  ,  $\omega_n^{k+n} = \omega_n^k$
- Consider some  $x = \omega_{2k}^j \in X$ :

$$x^{2} = \left(\omega_{2k}^{j}\right)^{2} = \omega_{2k}^{2j} = \omega_{k}^{j}$$
  
If  $j \ge k : \omega_{k}^{j} = \omega_{k}^{j-k}$ 

• Clearly,  $|X^2| = |X|/2$  (|X| = 2k,  $|X^2| = k$ ).

Algorithm Theory

#### Analysis



New recurrence formula:

$$T(N, |X|) \le 2 \cdot T(\frac{N}{2}, \frac{|X|}{2} + O(N + |X|)$$

- W.I.o.g., assume that N is a power of 2
  - We can just add additional coefficients that are equal to 0.
- To compute p(x) for the N different points in X, we need to recursively compute  $p_0(x^2)$  and  $p_1(x^2)$  for all  $x^2 \in X^2$

- p has degree N - 1,  $p_0$  and  $p_1$  have degree  $N/_2 - 1$ ,  $|X^2| = |X|/_2$ 

- Combine step: compute  $p(x) = p_0(x^2) + x \cdot p_1(x^2)$  for all  $x \in X$
- $|X| = N \implies T(N) \le 2 \cdot T(N/2) + O(N)$

 $T(N) = O(N \cdot \log N)$ 

## Faster Polynomial Multiplication?



Idea to compute  $p(x) \cdot q(x)$  (for polynomials of degree < n):



## **Discrete Fourier Transform**



• The values  $p\left(\omega_N^j\right)$  for j = 0, ..., N - 1 uniquely define a polynomial p of degree < N.

#### **Discrete Fourier Transform (DFT):**

• Assume  $a = (a_0, ..., a_{N-1})$  is the coefficient vector of poly. p $\left( p(x) = a_{N-1}x^{N-1} + \dots + a_1x + a_0 \right)$ 

$$\mathsf{DFT}_N(a) \coloneqq \left( p(\omega_N^0), p(\omega_N^1), \dots, p(\omega_N^{N-1}) \right)$$

### Example



- Consider polynomial  $p(x) = 3x^3 15x^2 + 18x$
- Choose N = 4

•

Roots of unity:  $\omega_4^1 = i$   $\omega_4^2 = -1$   $\omega_4^0 = 1$  $\omega_4^3 = -i$ 

#### Example



- Consider polynomial  $p(x) = 3x^3 15x^2 + 18x$
- N = 4, roots of unity:  $\omega_4^0 = 1$ ,  $\omega_4^1 = i$ ,  $\omega_4^2 = -1$ ,  $\omega_4^3 = -i$
- Evaluate p(x) at  $\omega_4^k$ :

$$\begin{pmatrix} \omega_4^0, p(\omega_4^0) \end{pmatrix} = (1, p(1)) = (1, 6) \\ \begin{pmatrix} \omega_4^1, p(\omega_4^1) \end{pmatrix} = (i, p(i)) = (i, 15 + 15i) \\ \begin{pmatrix} \omega_4^2, p(\omega_4^2) \end{pmatrix} = (-1, p(-1)) = (-1, -36) \\ \begin{pmatrix} \omega_4^3, p(\omega_4^3) \end{pmatrix} = (-i, p(-i)) = (-i, 15 - 15i)$$

• For 
$$a = (0,18, -15,3)$$
:  
 $DFT_4(a) = (6, 15 + 15i, -36, 15 - 15i)$ 

### **DFT: Recursive Structure**



Evaluation for k = 0, ..., N - 1:

$$p(\omega_N^k) = p_0((\omega_N^k)^2) + \omega_N^k \cdot p_1((\omega_N^k)^2)$$
$$= \begin{cases} p_0(\omega_{N/2}^k) + \omega_N^k \cdot p_1(\omega_{N/2}^k) & \text{if } k < N/2 \\ p_0(\omega_{N/2}^{k-N/2}) + \omega_N^k \cdot p_1(\omega_{N/2}^{k-N/2}) & \text{if } k \ge N/2 \end{cases}$$

For the coefficient vector a of p(x):

$$DFT_{N}(a) = \left(p_{0}(\omega_{N/2}^{0}), \dots, p_{0}(\omega_{N/2}^{N/2-1}), p_{0}(\omega_{N/2}^{0}), \dots, p_{0}(\omega_{N/2}^{N/2-1})\right) + \left(\omega_{N/2}^{0}p_{1}(\omega_{N/2}^{0}), \dots, \omega_{N}^{N/2-1}p_{1}(\omega_{N/2}^{N/2-1}), \omega_{N}^{N/2}p_{1}(\omega_{N/2}^{0}), \dots, \omega_{N}^{N-1}p_{1}(\omega_{N/2}^{N/2-1})\right)$$

Algorithm Theory

### Example



For the coefficient vector a of p(x):

$$DFT_{N}(a) = \left(p_{0}(\omega_{N/2}^{0}), \dots, p_{0}(\omega_{N/2}^{N/2-1}), p_{0}(\omega_{N/2}^{0}), \dots, p_{0}(\omega_{N/2}^{N/2-1})\right) + \left(\omega_{N/2}^{0}p_{1}(\omega_{N/2}^{0}), \dots, \omega_{N}^{N/2-1}p_{1}(\omega_{N/2}^{N/2-1}), \omega_{N}^{N/2}p_{1}(\omega_{N/2}^{0}), \dots, \omega_{N}^{N-1}p_{1}(\omega_{N/2}^{N/2-1})\right)$$

N = 4:

$$p(\omega_4^0) = p_0(\omega_2^0) + \omega_4^0 p_1(\omega_2^0)$$
  

$$p(\omega_4^1) = p_0(\omega_2^1) + \omega_4^1 p_1(\omega_2^1)$$
  

$$p(\omega_4^2) = p_0(\omega_2^0) + \omega_4^2 p_1(\omega_2^0)$$
  

$$p(\omega_4^3) = p_0(\omega_2^1) + \omega_4^3 p_1(\omega_2^1)$$

Need: 
$$\left(p_0(\omega_2^0), p_0(\omega_2^1)
ight)$$
 and  $\left(p_1(\omega_2^0), p_1(\omega_2^1)
ight)$ 

(DFTs of coefficient vectors of  $p_0$  and  $p_1$ )

Algorithm Theory

# Summary: Computation of DFT<sub>N</sub>



• Divide-and-conquer algorithm for  $DFT_N(p)$ :

#### 1. Divide

- $N \leq 1$ : DFT<sub>1</sub>(p) =  $a_0$
- N > 1: Divide p into  $p_0$  (even coeff.) and  $p_1$  (odd coeff).

#### 2. Conquer

Solve  $DFT_{N/2}(p_0)$  and  $DFT_{N/2}(p_1)$  recursively

#### **3. Combine**

Compute  $DFT_N(p)$  based on  $DFT_{N/2}(p_0)$  and  $DFT_{N/2}(p_1)$ 

## Small Constant Improvement



Polynomial p of degree N - 1:

$$p(\omega_{N}^{k}) = \begin{cases} p_{0}(\omega_{N/2}^{k}) + \omega_{N}^{k} \cdot p_{1}(\omega_{N/2}^{k}) & \text{if } k < N/2 \\ p_{0}(\omega_{N/2}^{k-N/2}) + \omega_{N}^{k} \cdot p_{1}(\omega_{N/2}^{k-N/2}) & \text{if } k \ge N/2 \\ \end{cases}$$
$$= \begin{cases} p_{0}(\omega_{N/2}^{k}) + \omega_{N}^{k} \cdot p_{1}(\omega_{N/2}^{k}) & \text{if } k < N/2 \\ p_{0}(\omega_{N/2}^{k-N/2}) - \omega_{N}^{k-N/2} \cdot p_{1}(\omega_{N/2}^{k-N/2}) & \text{if } k \ge N/2 \end{cases}$$

• 
$$\omega_N^{k-N/2} = e^{\frac{2\pi i}{N} \cdot (k-N/2)} = e^{\frac{2\pi i}{N} \cdot k} \cdot e^{-\frac{2\pi i}{N} \cdot \frac{N}{2}} = \omega_N^k \cdot e^{-\pi i} = -\omega_N^k$$

Need to compute  $p_0(\omega_{N/2}^k)$  and  $\omega_N^k \cdot p_1(\omega_{N/2}^k)$  for  $0 \le k < N/2$ .

### Example N = 8



$$p(\omega_8^0) = p_0(\omega_4^0) + \omega_8^0 \cdot p_1(\omega_4^0)$$

$$p(\omega_8^1) = p_0(\omega_4^1) + \omega_8^1 \cdot p_1(\omega_4^1)$$

$$p(\omega_8^2) = p_0(\omega_4^2) + \omega_8^2 \cdot p_1(\omega_4^2)$$

$$p(\omega_8^3) = p_0(\omega_4^3) + \omega_8^3 \cdot p_1(\omega_4^3)$$

$$p(\omega_8^4) = p_0(\omega_4^0) - \omega_8^0 \cdot p_1(\omega_4^0)$$

$$p(\omega_8^5) = p_0(\omega_4^1) - \omega_8^1 \cdot p_1(\omega_4^1)$$

$$p(\omega_8^6) = p_0(\omega_4^2) - \omega_8^2 \cdot p_1(\omega_4^2)$$

$$p(\omega_8^7) = p_0(\omega_4^3) - \omega_8^3 \cdot p_1(\omega_4^3)$$

# Fast Fourier Transform (FFT) Algorithm



#### Algorithm FFT(a)

- Input: Array *a* of length *N*, where *N* is a power of 2
- Output:  $DFT_N(a)$

if n = 1 then return  $a_0$ ;  $//a = [a_0]$  $d^{[0]} \coloneqq \text{FFT}([a_0, a_2, \dots, a_{N-2}]);$  $d^{[1]} \coloneqq \text{FFT}([a_1, a_3, \dots, a_{N-1}]);$  $\omega_N \coloneqq e^{2\pi i/N}; \omega \coloneqq 1;$ for k = 0 to  $N/_2 - 1$  do  $//\omega = \omega_N^k$  $x \coloneqq \omega \cdot d_{\nu}^{[1]};$  $d_k \coloneqq d_k^{[0]} + x; d_{k+N/2} \coloneqq d_k^{[0]} - x;$  $\omega \coloneqq \omega \cdot \omega_N$ 

end;

return  $d = [d_0, d_1, ..., d_{N-1}];$ 

Algorithm Theory