$11 F$

 Algorithm Theory

 Algorithm Theory}

Chapter 2 Greedy Algorithms

Part I:

Interval Scheduling \& Partitioning

Fabian Kuhn

Greedy Algorithms

- No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
- Optimal solutions
- Close to optimal solutions
- No (reasonable) solutions at all
- If it works, very interesting approach!
- And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

- Given: Set of intervals, e.g. $[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]$

- Goal: Select largest possible non-overlapping set of intervals
- For simplicity: overlap at boundary ok (i.e., $[4,7]$ and $[7,9]$ are non-overlapping)
- Example: Intervals are room requests; satisfy as many as possible

Greedy Algorithms

- Several possibilities...

Choose first available interval:

Choose shortest available interval:

Greedy Algorithms

Choose available request with earliest finishing time:

$R:=$ set of all requests; $S:=$ empty set;
while R is not empty do
choose $r \in R$ with smallest finishing time
add r to S
delete all requests from R that are not compatible with r
end
// S is the solution

Earliest Finishing Time is Optimal

- Let O be the set of intervals of an optimal solution
- Can we show that $S=O$?
- No...

- Show that $|S|=|O|$.

Or alternatively: $|S| \geq|O|$ for any other solution O.

Greedy Stays Ahead

- Greedy solution S :

$$
\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{|S|}, b_{|S|}\right], \quad \text { where } b_{i} \leq a_{i+1}
$$

- Some optimal solution O :

$$
\left[a_{1}^{*}, b_{1}^{*}\right],\left[a_{2}^{*}, b_{2}^{*}\right], \ldots,\left[a_{|O|}^{*}, b_{|O|}^{*}\right], \quad \text { where } b_{i}^{*} \leq a_{i+1}^{*}
$$

- Define $b_{i}:=\infty$ for $i>|S|$ and $b_{i}^{*}:=\infty$ for $i>|O|$

Claim: $\forall i \geq 1, b_{i} \leq b_{i}^{*} \Longrightarrow|S| \geq|O|$ because $b_{|O|} \leq b_{|O|}^{*}<\infty$

Greedy Stays Ahead

Claim: For all $i \geq 1, b_{i} \leq b_{i}^{*}$
Proof (by induction on i):
Base case $\boldsymbol{i}=1$: $\quad b_{1} \leq b_{1}^{*}$
Step $\boldsymbol{i}-\mathbf{1} \rightarrow \boldsymbol{i}: \quad$ Induction Hypothesis: $\boldsymbol{b}_{\boldsymbol{i - 1}} \leq \boldsymbol{b}_{\boldsymbol{i}-\mathbf{1}}^{*}$

Corollary: Earliest finishing time algorithm is optimal.

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

- We will see an algorithm using another design technique later.

Interval Partitioning

- Schedule all intervals: Partition intervals into as few as possible non-overlapping sets of intervals
- Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
- Intervals are requests to use some room during this time
- Assign all requests to some room such that there are no conflicts
- Use as few rooms as possible
- Assignment to 3 resources:

Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Because we allow intervals to overlap at the boundaries, "passing" means in the inside of the interval.
- Depth of initial example is 4 (e.g., $[0,10],[4,7],[5,8],[5,12])$:

Lemma: Number of resources needed \geq depth

- Follows directly from definition of depth.

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

- Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assign labels $1, \ldots$ to the intervals; same label \rightarrow non-overlapping

1. sort intervals by starting time: $I_{1}, I_{2}, \ldots, I_{n}$
2. for $i=1$ to n do
3. assign smallest possible label to I_{i} (possible label: different from conflicting intervals $I_{j}, j<i$)
4. end

Interval Partitioning Algorithm

Example:

- Labels:

- Number of labels = depth = 4

Interval Partitioning: Analysis

Theorem:

a) Let d be the depth of the given set of intervals. The algorithm assigns a label from $1, \ldots, d$ to each interval.
b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
- All intervals $I_{j}, j<i$ overlapping with I_{i}, overlap at the beginning of I_{i}

- At most $d-1$ such intervals \rightarrow some label in $\{1, \ldots, d\}$ is available.

