

Algorithm Theory

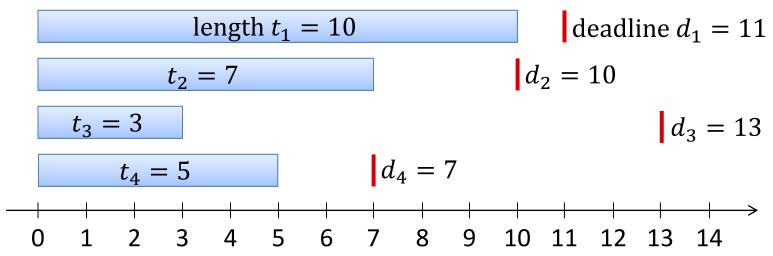
Chapter 2 Greedy Algorithms Part III:

Exchange Arguments

Back to Scheduling

FREIBURG

• Given: *n* requests / jobs with deadlines:



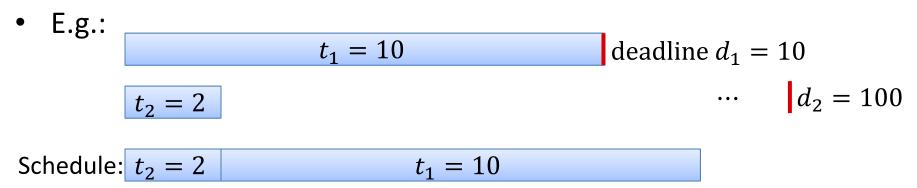
- Goal: schedule all jobs with minimum lateness L
 - Schedule: s(i), f(i): start and finishing times of request iNote: $f(i) = s(i) + t_i$
 - Lateness L_i of request $i : L_i \coloneqq \max\{0, f(i) d_i\}$
- Lateness $L \coloneqq \max\left\{0, \max_{i}\left\{f(i) d_{i}\right\}\right\} = \max_{i} L_{i}$
 - largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Algorithm Theory

Greedy Algorithm?

Schedule jobs in order of increasing length?

• Ignores deadlines: seems too simplistic...



Schedule by increasing slack time?

• Should be concerned about slack time: $d_i - t_i$

 $t_1 = 10$ deadline $d_1 = 10$
 $t_2 = 2$ $d_2 = 3$

 Schedule:
 $t_1 = 10$ $t_2 = 2$

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_i
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

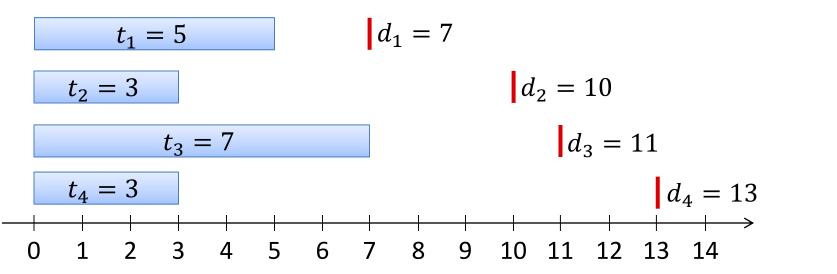
Algorithm:

- Assume jobs are reordered such that $d_1 \leq d_2 \leq \cdots \leq d_n$
- Start/finishing times:
 - First job starts at time s(1) = 0
 - Duration of job *i* is $t_i: f(i) = s(i) + t_i$
 - No gaps between jobs: s(i + 1) = f(i)

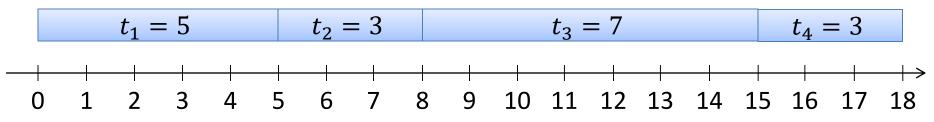
(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:



Schedule:

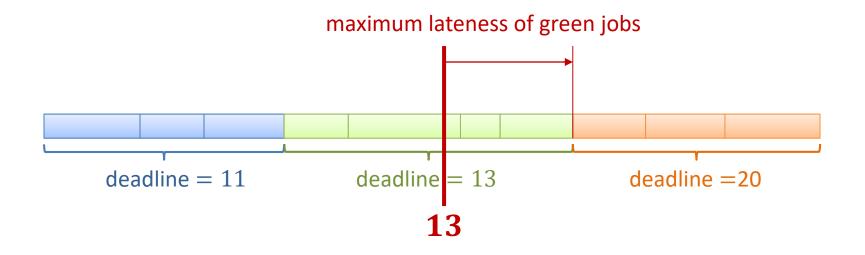


Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Algorithm Theory

Basic Facts

- 1. There is an optimal schedule with no idle time
 - Can just schedule jobs earlier...
- 2. Inversion: Job *i* scheduled before job *j* if $d_i > d_j$ Schedules with no inversions have the same maximum lateness

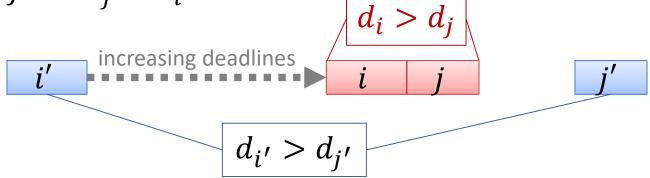


Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider some schedule \mathcal{O}' with no idle time
- If \mathcal{O}' has inversions, \exists pair (i, j), s.t. i is scheduled immediately before j and $d_j < d_i$

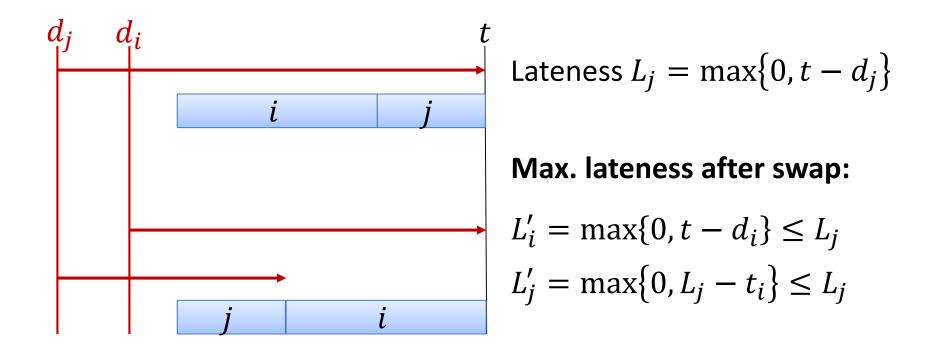


- Claim: Swapping *i* and *j* gives a schedule with
 - 1. Fewer inversions
 - 2. Maximum lateness no larger than in \mathcal{O}'

Algorithm Theory

Earliest Deadline is Optimal

Claim: Swapping *i* and *j*: maximum lateness no larger than in O'



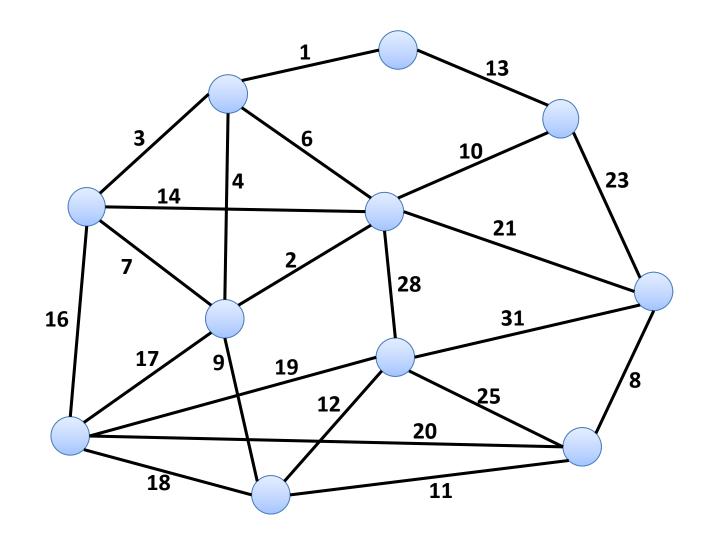
Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step move solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

Another Exchange Argument Example

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- **Given**: weighted graph
- Goal: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:
 - Start with empty edge set
 - As long as we do not have a spanning tree:
 add minimum weight edge that doesn't close a cycle

Kruskal Algorithm: Example



Kruskal is Optimal

- Basic exchange step: swap to edges to get from tree T to tree T_K
 - Swap out edge not in Kruskal tree T_K , swap in edge in Kruskal tree T_K
 - Swapping does not increase total weight
- For simplicity, assume, weights are unique

