

Algorithm Theory

Chapter 2 Greedy Algorithms

Part IV: The Greedy Algorithm for Matroids

Fabian Kuhn

Matroids

• Same as MST, but more abstract...

Matroid: pair (E, I)

- E: finite set, called the ground set
- *I*: finite family of finite subsets of *E* (i.e., *I* ⊆ 2^{*E*}), called independent sets

set system

(*E*, *I*) needs to satisfy 3 properties:

- 1. Empty set is independent, i.e., $\emptyset \in I$ (implies that $I \neq \emptyset$)
- **2.** Hereditary property: For all $A \subseteq E$ and all $A' \subseteq A$,

if $A \in I$, then also $A' \in I$

Simple example:

 $I \coloneqq \begin{cases} \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \\ \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \end{cases} \end{cases}$

 $E := \{1, 2, 3, 4\}$

3. Augmentation / Independent set exchange property: If $A, B \in I$ and |A| > |B|, there exists $x \in A \setminus B$ such that

 $\mathbf{B}' \coloneqq \mathbf{B} \cup \{\mathbf{x}\} \in \mathbf{I}$

Example

- Fano matroid:
 - Smallest finite projective plane of order 2...

Matroids and Greedy Algorithms

Weighted matroid: each $e \in E$ has a weight $w(e) \ge 0$

• Recall that all independent sets in *I* consist of a finite set of elements of *E*.

Goal: find maximum weight independent set

Greedy algorithm:

- 1. Start with $S = \emptyset$
- 2. Add max. weight $x \in E \setminus S$ to S such that $S \cup \{x\} \in I$

Claim: greedy algorithm computes **optimal** solution

Matroid (E, I), Greedy is Optimal weights $w(x) \ge 0$ for all $x \in E$ A: any other solution (ind. sef) • S: greedy solution ACE, AEI S≤E, S€I 15121A1: (32a) for contradiction, assume IAI>ISI : excl. prop: FXEASS S.t. SUIXJET greedy would have added x $\omega(S) \ge \omega(A)$: will show that (*) for contradiction, assume [w(S)< w(A)] $\forall ie \{1, \dots, a\} : \omega(x_i) \ge \omega(y_i)$ $S = \{x_1, x_2, ..., x_s\}$ $(w(x_1) \ge w(x_2) \ge ... \ge w(x_s)$ Lo $\omega(S) \ge \omega(A)$ $A = \{y_1, y_2, ..., y_n\}$ $\omega(y_1) \ge \omega(y_2) \ge ... \ge \omega(y_n)$

 $\begin{aligned} T(\mathbf{w}) &= \mathbf{0} \text{ there is a smallest } k \leq a \text{ s.t. } \underline{w(\mathbf{x}_{k}) < w(\mathbf{y}_{k})} \\ S' = \{x_{1}, ..., x_{k-1}\} & \underline{augu, prop.} : \exists \mathbf{y} \in A' \setminus S' \text{ s.t. } S' \cup \mathbf{y}\mathbf{y}\mathbf{z} \in \mathbf{I} \\ w(\mathbf{y})\mathbf{z} \ w(\mathbf{y}_{k}) > w(\mathbf{x}_{k}) \\ A' = \{y_{1}, ..., y_{k}\} & greedy \ considers \ \mathbf{y} \ before \ \mathbf{x}_{k} \\ (A') > (S') & greedy \ would \ add \ \mathbf{y} \\ \end{aligned}$

Algorithm Theory

URG

FREIBU

Forests of a graph G = (V, E):

- forest F: subgraph with no cycles (i.e., $F \subseteq E$)
- \mathcal{F} : set of all forests $\rightarrow (E, \mathcal{F})$ is a matroid
- Greedy algorithm gives maximum weight forest
 - equivalent to MST problem

Bicircular matroid of a graph G = (V, E):

- \mathcal{B} : set of edges such that every connected subset has ≤ 1 cycle
- (E, \mathcal{B}) is a matroid \rightarrow greedy gives max. weight such subgraph

Linearly independent vectors:

- Vector space V, E: finite set of vectors, I: sets of lin. indep. vect.
- Fano matroid can be defined like that

Forest Matroid of Graph G = (V, E)

Ground set: E (edges) **Independent sets:** \mathcal{F} (forests of G)

Basic properties: $\emptyset \in \mathcal{F}$ + hereditary property

• Empty graph has no cycles, removing edges doesn't create cycles

Independent set exchange property:

- Given \mathcal{F}_1 , \mathcal{F}_2 s.t. $|\mathcal{F}_1| > |\mathcal{F}_2|$ - $\exists e \in \mathcal{F}_1 \setminus \mathcal{F}_2$ s.t. $\mathcal{F}_2 \cup \{e\}$ is a forest
- \mathcal{F}_1 needs to have an edge *e* connecting two components of \mathcal{F}_2
 - Because it can only have $|\mathcal{F}_2|$ edges connecting nodes inside components

Greedoid

- Matroids can be generalized even more
- Relax hereditary property:

Replace $A' \subseteq A \in I \implies A' \in I$ by $\emptyset \neq A \in I \implies \exists a \in A, \text{ s.t. } A \setminus \{a\} \in I$

- Augmentation property holds as before
- Under certain conditions on the weights, greedy is optimal for computing the max. weight *A* ∈ *I* of a greedoid.
 - Additional conditions automatically satisfied by hereditary property
- More general than matroids