

Algorithm Theory

Chapter 3 Dynamic Programming Part II: Matrix Chain Multiplication

Fabian Kuhn

"*Memoization"* for increasing the efficiency of a recursive solution:

• Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned (without repeated computation!).

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

• For each sub-problem, store how the value is obtained (according to which recursive rule).

Matrix-chain multiplication

Given: sequence (chain) $\langle A_1, A_2, ..., A_n \rangle$ of matrices

Goal: compute the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is *fully parenthesized* if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

All possible fully parenthesized matrix products of the chain $\langle A_1, A_2, A_3, A_4 \rangle$:

 $(A_1(A_2(A_3A_4))))$

 $(\,A_1(\,(\,A_2A_3)\,A_4\,)\,)$

 $(\,(\,A_1A_2\,)(\,A_3A_4\,)\,)$

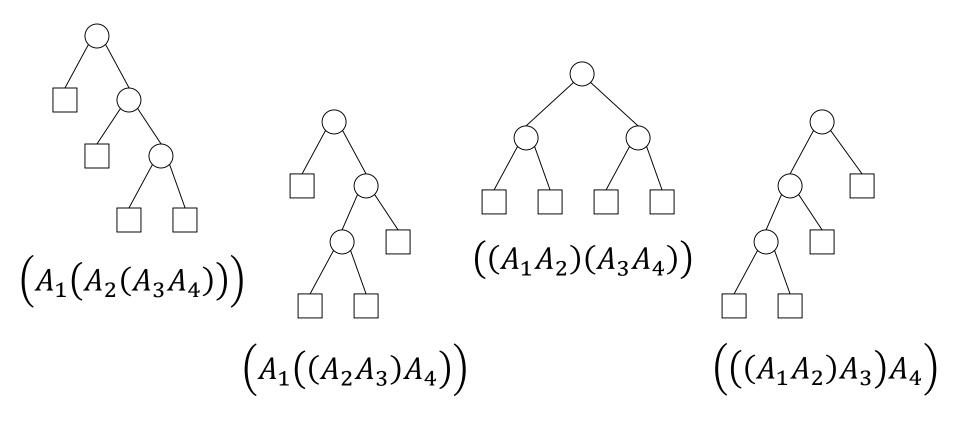
 $((A_1(A_2A_3))A_4)$

 $(((A_1A_2)A_3)A_4)$

Different parenthesizations

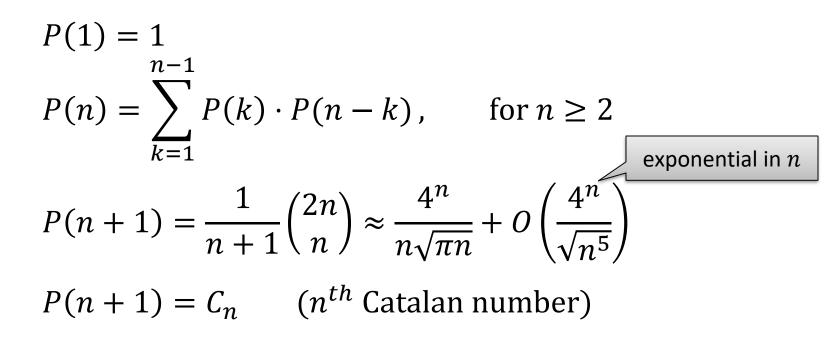
FREIBURG

Different parenthesizations correspond to different trees:



Number of different parenthesizations

 Let P(n) be the number of alternative parenthesizations of the product A₁ · ... · A_n:



• Thus: Exhaustive search needs exponential time!

Multiplying Two Matrices

$$A = (a_{ij})_{p \times q}, \qquad B = (b_{ij})_{q \times r}, \qquad A \cdot B = C = (c_{ij})_{p \times r}$$
$$c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$$

Algorithm Matrix-MultUsingInput: $(p \times q)$ matrix $A, (q \times r)$ matrix BUsingOutput: $(p \times r)$ matrix $C = A \cdot B$ two1 for $i \coloneqq 1$ to p domult2 for $j \coloneqq 1$ to r domult3 $C[i,j] \coloneqq 0;$ mult4 for $k \coloneqq 1$ to q domult5 $C[i,j] \coloneqq C[i,j] + A[i,k] \cdot B[k,j]$

Remark:

Using this algorithm, multiplying two $(n \times n)$ matrices requires n^3 multiplications. This can also be done faster, using only $O(n^{2.373})$ multiplications.

using divide-and-conquer

Number of multiplications and additions: $p \cdot q \cdot r$

Algorithm Theory

Matrix-chain multiplication: Example

Computation of the product $A_1 A_2 A_3$, where

- A_1 : (50 × 5) matrix
- A_2 : (5 × 100) matrix
- A_3 : (100 × 10) matrix

a) Parenthesization $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$ require:

$\begin{array}{c} A' = (A') \\ 50 \times 100 \end{array}$	$(A_1 A_2): 50 \cdot 5 \cdot 10$	00 = 25'000	$A^{\prime\prime} = (A^{\prime\prime})$	A_2A_3): 5 · 100	$0 \cdot 10 = 5'000$
	$50 \cdot 100 \cdot 10$				= 2'500
Sum:		75′000			7′500

Structure of an Optimal Parenthesization

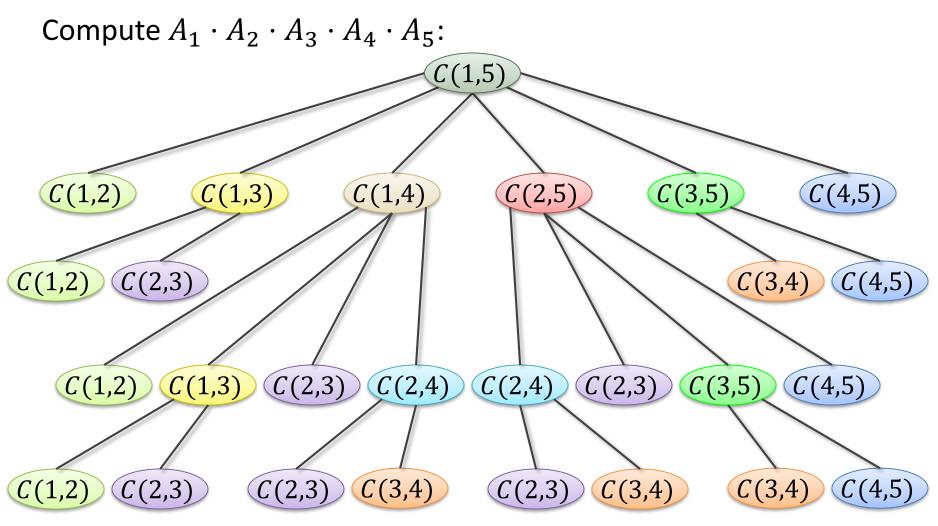
• $(A_{\ell...r})$: optimal parenthesization of $A_{\ell} \cdot ... \cdot A_{r}$

For some $1 \le k < n: (A_{1...n}) = ((A_{1...k}) \cdot (A_{k+1...n}))$

- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix A_i is a $(d_{i-1} \times d_i)$ -matrix
- Cost to solve sub-problem $A_{\ell} \cdot ... \cdot A_r$, $\ell \leq r$ optimally: $C(\ell, r)$
- Then:

$$\begin{split} C(\ell,r) &= \min_{\ell \leq k < r} \{ C(\ell,k) + C(k+1,r) + d_{\ell-1}d_kd_r \} \\ C(\ell,\ell) &= 0 \end{split}$$

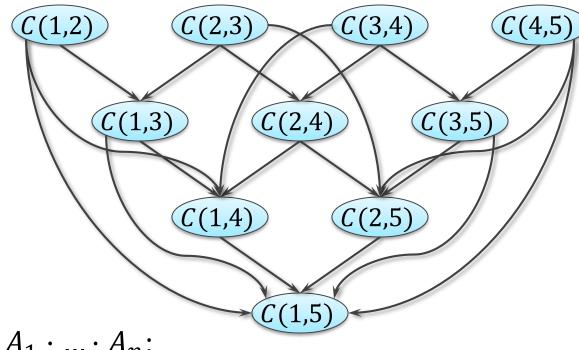
Recursive Computation of Opt. Solution



Using Meomization

FRENC

Compute $A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$:



Compute $A_1 \cdot \ldots \cdot A_n$:

- Each C(i, j), i < j is computed exactly once $\rightarrow O(n^2)$ values
- Each C(i, j) dir. depends on C(i, k), C(k, j) for i < k < j

Cost for each $C(i, j): O(n) \rightarrow$ overall time: $O(n^3)$

Algorithm Theory

Fabian Kuhn

Algorithm Theory

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

 $O(n \cdot \log n).$

[Hu, Shing; 1980]

2. There is a linear time algorithm that determines a parenthesization using at most

 $1.155 \cdot C(1, n)$

multiplications.

[Hu, Shing; 1981]

UNI