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„Memoization“ for increasing the efficiency of a recursive solution:
• Only the first time a sub-problem is encountered, its solution is computed

and then stored in a table. Each subsequent time that the subproblem is 
encountered, the value stored in the table is simply looked up and returned
(without repeated computation!).

Dynamic programming / memoization can be applied if
• Optimal solution contains optimal solutions to sub-problems

(recursive structure)

• Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution: 
• For each sub-problem, store how the value is obtained (according to which 

recursive rule).

Dynamic Programming
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Matrix-chain multiplication

Given: sequence (chain)  𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1  𝐴2 …  𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is 

• a single matrix 

• or the product of two fully parenthesized matrix products, 
surrounded by parentheses.
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All possible fully parenthesized matrix products of the chain 
𝐴1, 𝐴2, 𝐴3, 𝐴4:

( 𝐴1 ( 𝐴2 ( 𝐴3𝐴4 ) ) )

( 𝐴1 ( ( 𝐴2𝐴3 ) 𝐴4 ) )

( ( 𝐴1𝐴2 )( 𝐴3𝐴4 ) )

( ( 𝐴1 ( 𝐴2𝐴3 ) ) 𝐴4 )

( ( ( 𝐴1𝐴2 )𝐴3 ) 𝐴4 )

Example
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Different parenthesizations

Different parenthesizations correspond to different trees:

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4
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Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of 
the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:

•

𝑃 1 = 1

𝑃 𝑛 = 

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!

exponential in 𝑛
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Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 = 

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵

Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1  for 𝑖 ≔ 1 to 𝑝 do
2      for 𝑗 ≔ 1 to 𝑟 do
3           𝐶 𝑖, 𝑗 ≔ 0;
4           for 𝑘 ≔ 1 to 𝑞 do
5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑  𝒒  𝒓

Remark: 

Using this algorithm, multiplying 
two (𝑛  𝑛) matrices requires 𝑛3

multiplications. This can also be 
done faster, using only 𝑂(𝑛2.373)
multiplications.

using divide-and-conquer
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Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50  5) matrix

𝐴2 : (5  100) matrix

𝐴3 : (100  10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3) and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2):                                         𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3:                                                        𝐴1𝐴′′:

Sum:

50 ⋅ 5 ⋅ 100 = 25′000 5 ⋅ 100 ⋅ 10 = 5′000

50 ⋅ 100 ⋅ 10 = 50′000 50 ⋅ 5 ⋅ 10 = 2′500

75′000 7′500

50 × 100 5 × 10



Algorithm Theory Fabian Kuhn 9

Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝐶 ℓ, 𝑟 = min

ℓ≤𝑘<𝑟
𝐶 ℓ, 𝑘 + 𝐶 𝑘 + 1, 𝑟 + 𝑑ℓ−1𝑑𝑘𝑑𝑟

𝐶 ℓ, ℓ = 0
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Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)

𝐶(1,5)
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Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once  𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛) overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)
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Remarks about matrix-chain multiplication 

1. There is an algorithm that determines an optimal 
parenthesization in time 

𝑂 𝑛 ⋅ log 𝑛 .
[Hu, Shing; 1980]

2. There is a linear time algorithm that determines a 
parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.
[Hu, Shing; 1981]


