IIF

 Algorithm Theory

 Algorithm Theory}

Chapter 3
 Dynamic Programming

Part II:
Matrix Chain Multiplication

Fabian Kuhn

Dynamic Programming

„Memoization" for increasing the efficiency of a recursive solution:

- Only the first time a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned (without repeated computation!).

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

- For each sub-problem, store how the value is obtained (according to which recursive rule).

Matrix-chain multiplication

Given: sequence (chain) $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of matrices
Goal: compute the product $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}$

Problem: Parenthesize the product in a way that minimizes the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

- a single matrix
- or the product of two fully parenthesized matrix products, surrounded by parentheses.

Example

All possible fully parenthesized matrix products of the chain $\left\langle A_{1}, A_{2}, A_{3}, A_{4}\right\rangle:$

$$
\begin{aligned}
& \left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right) \\
& \left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right) \\
& \left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right) \\
& \left(\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}\right) \\
& \left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)
\end{aligned}
$$

Different parenthesizations

Different parenthesizations correspond to different trees:

$\left(A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)\right)$

$\left(\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)\right)$

$$
\left(A_{1}\left(\left(A_{2} A_{3}\right) A_{4}\right)\right)
$$

$\left(\left(\left(A_{1} A_{2}\right) A_{3}\right) A_{4}\right)$

Number of different parenthesizations

- Let $P(n)$ be the number of alternative parenthesizations of the product $A_{1} \cdot \ldots \cdot A_{n}$:

$$
\begin{aligned}
& P(1)=1 \\
& P(n)=\sum_{k=1}^{n-1} P(k) \cdot P(n-k), \quad \text { for } n \geq 2 \\
& P(n+1)=\frac{1}{n+1}\binom{2 n}{n} \approx \frac{4^{n}}{n \sqrt{\pi n}}+O\left(\frac{4^{n}}{\sqrt{n^{5}}}\right) \\
& P(n+1)=C_{n} \quad\left(n^{\text {th }} \text { Catalan number }\right)
\end{aligned}
$$

- Thus: Exhaustive search needs exponential time!

Multiplying Two Matrices

$$
\begin{gathered}
A=\left(a_{i j}\right)_{p \times q}, \quad B=\left(b_{i j}\right)_{q \times r}, \quad A \cdot B=C=\left(c_{i j}\right)_{p \times r} \\
c_{i j}=\sum_{k=1}^{q} a_{i k} b_{k j}
\end{gathered}
$$

Algorithm Matrix-Mult
Input: $\quad(p \times q)$ matrix $A,(q \times r)$ matrix B
Output: $(p \times r)$ matrix $C=A \cdot B$
1 for $i:=1$ to p do
2 for $j:=1$ to r do
$3 \quad C[i, j]:=0$;
$4 \quad$ for $k:=1$ to q do
$5 \quad C[i, j]:=C[i, j]+A[i, k] \cdot B[k, j]$

$$
C[i, j]:=C[i, j]+A[i, k] \cdot B[k, j]
$$

Remark:

Using this algorithm, multiplying two $(n \times n)$ matrices requires n^{3} multiplications. This can also be done faster, using only $O\left(n^{2.373}\right)$ multiplications.
using divide-and-conquer

Number of multiplications and additions: $\boldsymbol{p} \cdot \boldsymbol{q} \cdot \boldsymbol{r}$

Matrix-chain multiplication: Example

Computation of the product $A_{1} A_{2} A_{3}$, where
$A_{1}:(50 \times 5)$ matrix
$A_{2}:(5 \times 100)$ matrix
$A_{3}:(100 \times 10)$ matrix
a) Parenthesization $\left(\left(A_{1} A_{2}\right) A_{3}\right)$ and $\left(A_{1}\left(A_{2} A_{3}\right)\right)$ require:

$A^{\prime}=$	A_{2}): $50 \cdot 5 \cdot 1$	$=25^{\prime} 000$	$A^{\prime \prime}=$	A): 5 -	$=5^{\prime} 000$
50×100			5×10		
$A^{\prime} A_{3}$:	$50 \cdot 100 \cdot 10$	$=50^{\prime} 000$	$A_{1} A^{\prime \prime}$:	$50 \cdot 5 \cdot 10$	$=2^{\prime} 500$
Sum:		$75^{\prime} 000$			7'500

Structure of an Optimal Parenthesization

- $\left(A_{\ell \ldots r}\right)$: optimal parenthesization of $A_{\ell} \cdot \ldots \cdot A_{r}$

For some $1 \leq k<n:\left(A_{1 \ldots n}\right)=\left(\left(A_{1 \ldots k}\right) \cdot\left(A_{k+1 \ldots n}\right)\right)$

- Any optimal solution contains optimal solutions for sub-problems
- Assume matrix A_{i} is a $\left(d_{i-1} \times d_{i}\right)$-matrix
- Cost to solve sub-problem $A_{\ell} \cdot \ldots \cdot A_{r}, \ell \leq r$ optimally: $C(\ell, r)$
- Then:

$$
\begin{aligned}
& C(\ell, r)=\min _{\ell \leq k<r}\left\{C(\ell, k)+C(k+1, r)+d_{\ell-1} d_{k} d_{r}\right\} \\
& C(\ell, \ell)=0
\end{aligned}
$$

Recursive Computation of Opt. Solution

Compute $A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5}$:

Using Meomization

Compute $A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5}$:

Compute $A_{1} \cdot \ldots \cdot A_{n}$:

- Each $C(i, j), i<j$ is computed exactly once $\rightarrow O\left(n^{2}\right)$ values
- Each $C(i, j)$ dir. depends on $C(i, k), C(k, j)$ for $i<k<j$

Cost for each $C(i, j): O(n) \rightarrow$ overall time: $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

$$
O(n \cdot \log n)
$$

[Hu, Shing; 1980]
2. There is a linear time algorithm that determines a parenthesization using at most

$$
1.155 \cdot C(1, n)
$$

multiplications.
[Hu, Shing; 1981]

