



# **Algorithm Theory**

# Chapter 3 Dynamic Programming

# Part III: The Knapsack Problem

Fabian Kuhn

#### Knapsack



- *n* items 1, ..., *n*, each item has weight  $w_i$  and value  $v_i$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most *W* and total value is maximized:

$$\max \sum_{i \in S} v_i$$
  
s.t.  $S \subseteq \{1, ..., n\}$  and  $\sum_{i \in S} w_i \le W$ 

E.g.: jobs of length w<sub>i</sub> and value v<sub>i</sub>, server available for W time units, try to execute a set of jobs that maximizes the total value

#### **Recursive Structure?**

UNI FREIBURG

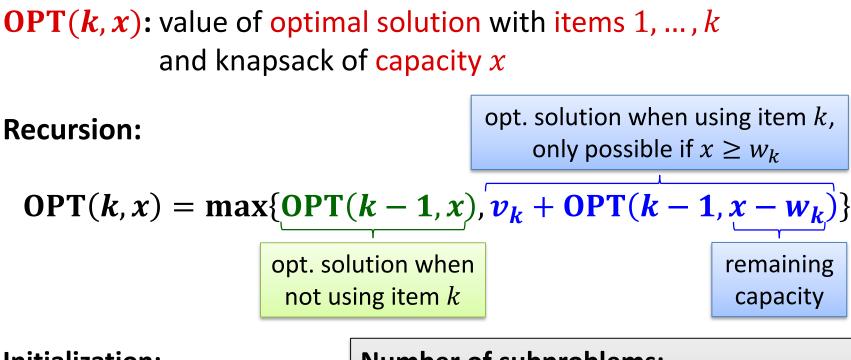
- Optimal solution:  $\mathcal{O}$
- If  $n \notin \mathcal{O}$ : OPT(n) = OPT(n-1)
- What if  $n \in \mathcal{O}$ ?
  - Taking n gives value  $v_n$
  - But, n also occupies space  $w_n$  in the bag (knapsack)
  - There is space for  $W w_n$  total weight left!

 $OPT(n) = v_n + optimal solution with first n - 1 items$ and knapsack of capacity  $W - w_n$ 

This is not just OPT(n-1).

# A More Complicated Recursion





#### Initialization:

- OPT(0, x) = 0
  - − no items  $\Rightarrow$  value 0
- OPT(k, 0) = 0
  - capacity  $0 \Longrightarrow$  value 0

#### Number of subproblems:

- arbitrary weights:  $\leq n \cdot 2^n$ 
  - In this case, the problem is NP-hard.
- integer weights:  $n \cdot W$ 
  - 2 cases per subproblem

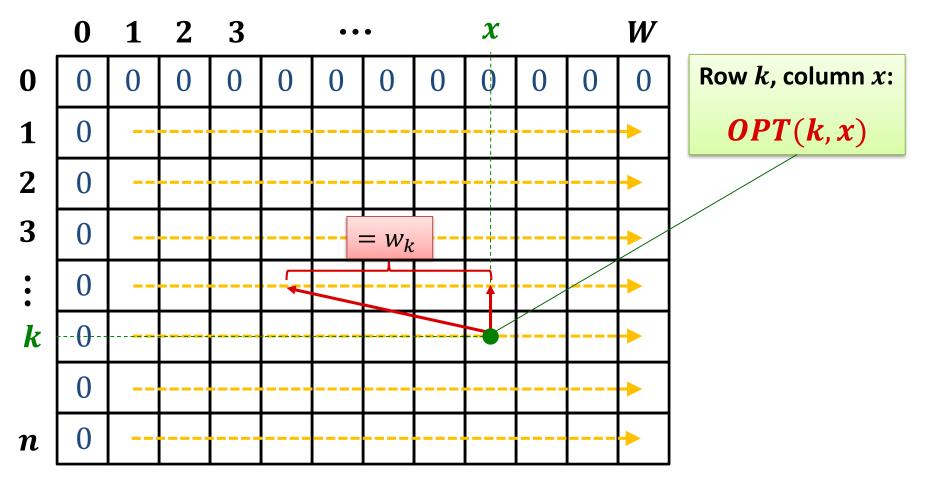
```
\Rightarrow running time: O(n \cdot W)
```

### Dynamic Programming Algorithm

FREIBURG

Set up table for all possible OPT(k, x)-values

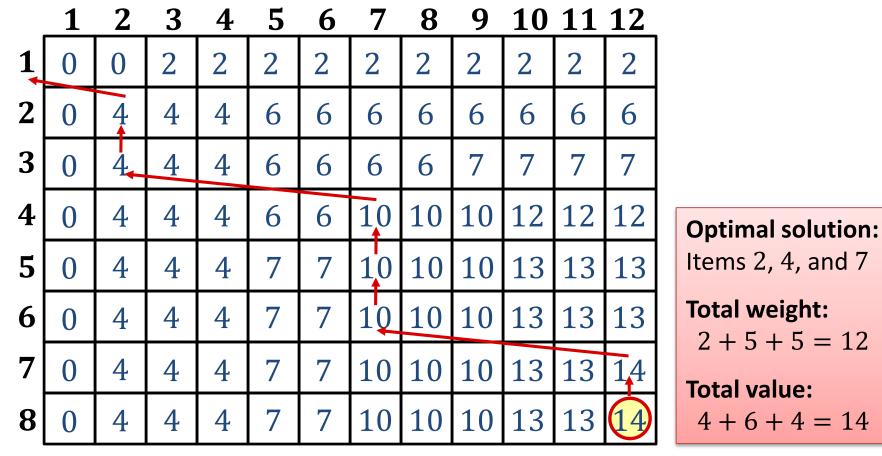
• Assume that all weights  $w_i$  are integers!



#### Example



- 8 items: (3,2), (2,4), (4,1), (5,6), (3,3), (4,3), (5,4), (6,6)
  Knapsack capacity: 12
  weight value
- $OPT(k, x) = max{OPT(k 1, x), OPT(k 1, x w_k) + v_k}$



Algorithm Theory

Fabian Kuhn

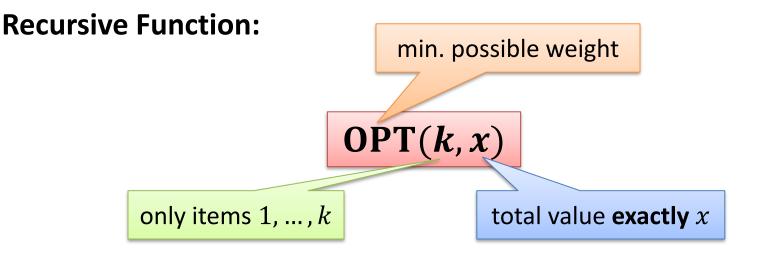
## Running Time of Knapsack Algorithm

FREIBURG

- Size of table:  $O(n \cdot W)$
- Time per table entry:  $O(1) \rightarrow \text{overall time: } O(n \cdot W)$
- Computing solution (set of items to pick): Follow  $\leq n$  arrows  $\rightarrow O(n)$  time (after filling table)
- Note: Time depends on  $W \rightarrow$  can be exponential in  $n \dots$
- And it only works if all weights are integers
  - ... or can be scaled so that they are integers

## Knapsack with Integer Values

- FREIBURG
- Let's also consider the case that weights are arbitrary and the values are integers...
- Assume that all item values are integers  $\in \{1, ..., V\}$
- Again distinguish two cases depending on if the last item is part of an optimal solution or it isn't.



# Knapsack with Integer Values

FREBURG

• Assume that all item values are integers  $\in \{1, ..., V\}$ 

#### **Recursive Function:**

- OPT(k, x): min. possible weight to achieve exactly value x with only items 1, ..., k
- Recursive definition of function OPT(k, x)

 $OPT(k, x) = \min\{OPT(k - 1, x), w_k + OPT(k - 1, x - v_k)\}$  OPT(k, 0) = 0  $OPT(0, x) = \infty \text{ for } x > 0$ only possible if  $x \ge v_k$ 

- At the end, find maximum x such that  $OPT(n, x) \le W$
- Number of subproblems  $\leq n^2 \cdot V \Rightarrow$  running time  $O(n^2 \cdot V)$ 
  - Max. required x-value:  $x \leq \sum_{i=1}^{n} v_k \leq n \cdot V$

Algorithm Theory

#### Fabian Kuhn



#### **Dynamic Programming:**

- Use recursion together with memorization
- Applicable if #recursive subproblems is moderately small

#### Additional Applications of Dynamic Programming:

- The idea can be applied to a wide range of problems
- Examples, beyond what we already saw:
  - Shortest path algorithms such as Bellman-Ford and Dijkstra can be seen as applications of DP
  - String comparison & matching problems such as edit distance, approximate text search, Biological sequence alignment problems, etc.
  - Further string problems: longest common subsequence, etc.
  - Hidden Markov model analysis
  - And many more ...