

Algorithm Theory

Chapter 4 Amortized Analysis

Part I: Basics & Accounting Method

Fabian Kuhn

Amortization

- Consider sequence o₁, o₂, ..., o_n of n operations (typically performed on some data structure D)
- **t**_i: execution time of operation *o*_i
- $T \coloneqq t_1 + t_2 + \dots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

Stack Data Type: Operations

- *S*.push(*x*) : inserts *x* on top of stack
- *S*.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- **S.multipop(k)** : remove and return top k elements
- Complexity: O(k)

What is the amortized complexity of these operations?

Intuitively: amortized cost per operation is constant

- We can only delete items from *S* that were previously pushed to *S*.
- The total time for deleting is not more than for pushing.

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Actual Cost of Augmented Stack Operations

- $S.push(x), S.pop(): actual cost t_i = O(1)$
- S. multipop(k) : actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop < cost for push

Amortized Cost

$$T = \sum_{i} t_i \le \sum_{i} a_i$$

Actual Cost of Augmented Stack Operations

- $S.push(x), S.pop(): actual cost t_i \le c$
- S. multipop(k) : actual cost $t_i \leq c \cdot k$

n operations: *p* push operations, the rest are pop and multipop op.

- $p \le n$ push op. \Rightarrow total push cost $\le c \cdot p$
- total #deleted elem. $\leq p \implies$ total pop/multipop cost $\leq c \cdot p$

$$\Rightarrow$$
 total cost $\leq 2 \cdot c \cdot p$

• Average cost per operation $\leq \frac{2cp}{n} \leq \frac{2cp}{p} = 2c$

Algorithm Theory

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	00001	1
2	00010	2
3	00011	1
4	00 100	3
5	0010 <mark>1</mark>	1
6	001 <mark>10</mark>	2
7	00111	1
8	01000	4
9	0100 <mark>1</mark>	1
10	010 <mark>10</mark>	2
11	0101 <mark>1</mark>	1
12	01 100	3
13	0110 <mark>1</mark>	1

Algorithm Theory

Observation:

• Each increment flips exactly one 0 into a 1

 $0010001111 \Longrightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - \rightarrow We always have enough "money" to pay!

Algorithm Theory

Accounting Method

amortized cost

Op.	Counter	Cost	To Bank	From Bank	Net Cost	Balance
	00000					0
1	00001	1	1	0	2	1
2	000 10	2	1	1	2	1
3	0001 <mark>1</mark>	1	1	0	2	2
4	00 100	3	1	2	2	1
5	0010 <mark>1</mark>	1	1	0	2	2
6	001 10	2	1	1	2	2
7	0011 1	1	1	0	2	3
8	0 1 0 0 0	4	1	3	2	1
9	0100 <mark>1</mark>	1	1	0	2	2
10	010 10	2	1	1	2	2
		C	+ <mark>T</mark> -	- F , =	= A	$B \ge 0$

Fabian Kuhn

 $\Rightarrow A \ge C$

 $\mathbf{B} \ge \mathbf{0}$