

Algorithm Theory

Chapter 5 Data Structures

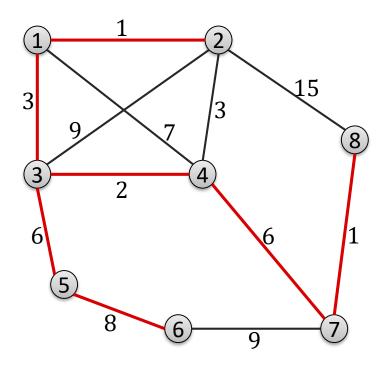
Part I: Union Find: Basic Implementation

Fabian Kuhn

Kruskal Algorithm:

- 1. Start with an empty edge set
- 2. In each step:

Add minimum weight edge *e* such that *e* does not close a cycle



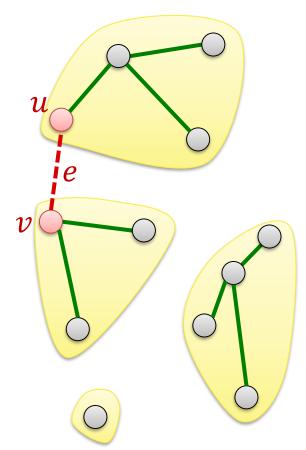
Implementation of Kruskal Algorithm

- 1. Go through edges in order of increasing weights sort edges by weight : $O(m \log n)$ time
- 2. For each edge $e = \{u, v\}$:

if e does not close a cycle then
 need to check if e closes a cycle
 ↓
 are u and v in same conn. comp.?

add *e* to the current solution

merge the connected components containing nodes u and v.



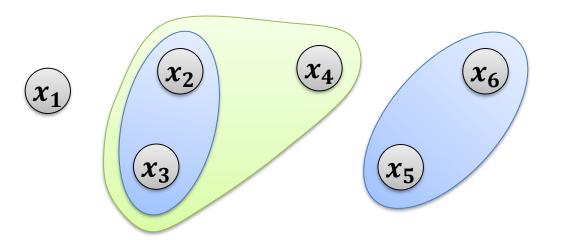
FREBURG

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements (a set of disjoint sets)

Operations:

- make_set(x): create a new set that only contains element x
- **find**(*x*): return the set containing *x*
- union(x, y): merge the two sets containing x and y



Implementation of Kruskal Algorithm

- Initialization:
 For each node v: make_set(v)
- Go through edges in order of increasing weights: Sort edges by edge weight
- For each edge e = {u, v}:
 if find(u) ≠ find(v) then

add e to the current solution

union(u, v)

Managing Connected Components

• Union-find data structure can be used more generally to manage the connected components of a graph

... if edges are added incrementally

- make_set(v) for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v
 (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

 Every set S of the partition is identified with a representative, by one of its members x ∈ S

Operations:

- make_set(x): x is the representative of the new set {x}
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- *n*: total number of make_set operations
- *m*: total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n 1 union operations

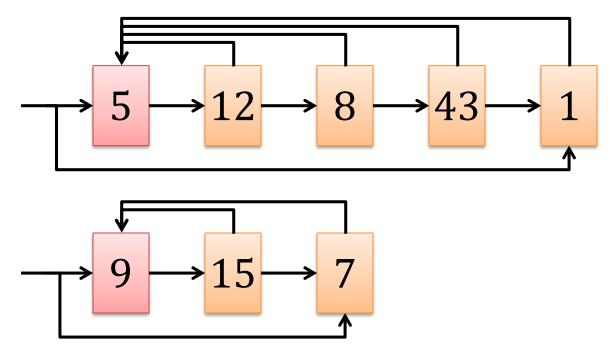
Remark:

- We assume that the *n* make_set operations are the first *n* operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

 representative: first list element (all nodes point to first elem.) in addition: pointer to first and last element



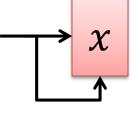
• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5,9

Linked List Implementation

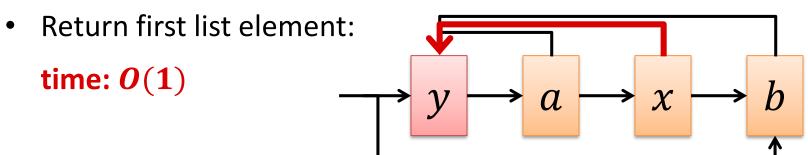
make_set(x):

• Create list with one element:

time: **0**(1)



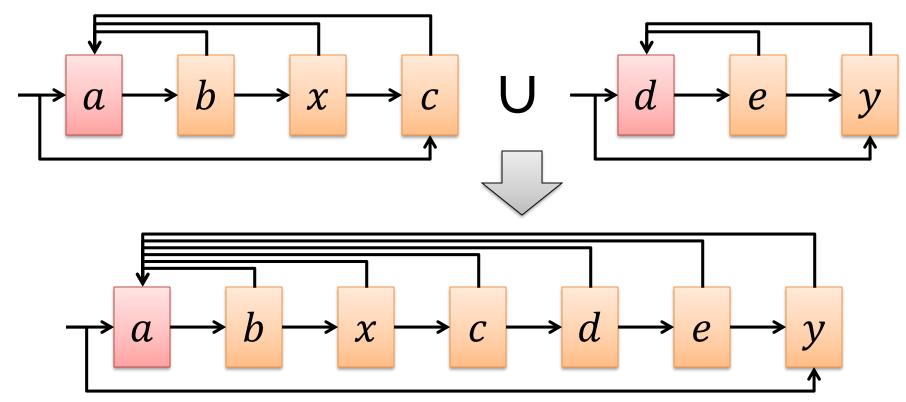
find(*x*):



Linked List Implementation

union(*x*, *y*):

• Append list of *y* to list of *x*:



Time: *O*(length of list of *y*)

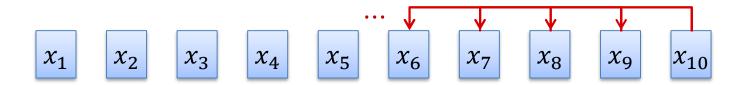
Algorithm Theory

Cost of Union (Linked List Implementation)

FREIBURG

Total cost for n - 1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)



• #pointer redirections: $1 + 2 + 3 + \dots + n - 1 = \Theta(n^2)$

Union-By-Size Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

Idea:

• In each union operation, append shorter list to longer one!

Cost for union of sets S_x and S_y : $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of *m* operations of which at most $u \le n$ are union operations is $O(m + u \cdot \log n)$.

- There are at most n 1 union operations
- Amortized and worst-case cost of make_set, find: O(1)
- Amortized cost of union operation: $O(\log n)$

Union-By-Size Heuristic

Theorem: The overall cost of m operations of which at most $u \le n$ are union operations is $O(m + u \cdot \log n)$.

Proof:

- Total cost of make-set & find operations: O(m)
- Total cost of union operations: *O*(#pointer redirections)
- Consider a fixed element *x*
- How often do we redirect the pointer of *x*?

- When redirecting the pointer of x, the size of the set of x at least doubles.
 ⇒ ≤ log₂ n pointer redir. for element x
 - But only if x ends up in a set of size > 1

• Total union cost: $O(u \cdot \log n)$

Algorithm Theory

Kruskal Algorithm:

Sorting edges by weight: $O(m \log n)$

Union-find part: $O(m + n \log n)$