

Algorithm Theory

Chapter 5 Data Structures

Part II: Union Find: Disjoint-Set Forests

- Represent each set by a tree
- Representative of a set is the root of the tree

Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root (parent pointer to itself)

union(*x*, *y*): attach tree of *x* to tree of *y*

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)

Union-By-Rank Heuristic

- We could use the same union-by-size idea as before and always attach the smaller tree to the larger tree.
- Instead, we use an alternative, slightly different idea

Union of sets S₁ and S₂:

- Each tree node v has a rank r(v), initially, after make_set: r(v) = 0
- Union of two trees (for sets S_1 and S_2) with roots v_1 and v_2
- If $r(v_1) \neq r(v_2)$, attach root of smaller rank to root of larger rank
- Otherwise, attach v_2 as to v_1 , increment rank $r(v_1)$ of root v_1

Remark: The rank r(v) is the height of the subtree rooted at v

- Initially, v is a one-node tree of height 0 and r(v) = 0
- Union operation:
 - If $r(v_1) \neq r(v_2)$, height of all subtrees stays the same, ranks do not change.
 - If $r(v_1) = r(v_2)$, height of subtree of v_1 and the rank $r(v_1)$ grow by 1

Algorithm Theory

Union-By-Rank Heuristic

rank = 0

Lemma: The subtree rooted at a node v of rank r(v) has at least $2^{r(v)}$ nodes.

Proof:

- A new node is in a tree of size 1 and has rank 0.
- Afterwards, the rank can only change in a union operation
 - If a node u gets v as a new child and r(u) = r(v) = r
 - Rank of root increases by 1, new tree size $\geq 2 \cdot 2^r = 2^{r+1}$

Union-By-Rank Heuristic

Lemma: Let $u = u_1, u_2, ..., u_k = v$ be the path from a node u to the root v in the tree containing node u. We then have

$$r(u_1) < r(u_2) < \dots < r(u_k).$$

Proof:

- We show that for any two nodes x and y such that y is the parent of x, we always have r(x) < r(y).
- Node y becomes the parent of x when the tree of root x is attached to the tree of root y in a union operation.
 - Either, we then have r(y) > r(x)
 - Or, we have r(y) = r(x). Then, the rank of y is increased by 1
 - Afterwards, only the rank of y can change (increase)

Corollary 1: The subtree of a node v has height at most r(v).

Corollary 2: All trees have height $O(\log n)$.

Algorithm Theory

Union-Find Algorithms

Recall: *m* operations, *n* of the operations are make_set-operations

Linked List with Union-By-Size:

- make_set: worst-case cost O(1)
- find : worst-case cost O(1)
- union : amortized worst-case cost O(log n)

Disjoint-Set Forest with Union-By-Rank (or Union-By-Size):

- make_set: worst-case cost O(1)
- find : worst-case cost O(log n)
- union : worst-case cost O(log n)

Can we make this faster?

Path Compression During Find Operation

find(*a*):

- 1. if $a \neq a$. parent then
- 2. $a.parent \coloneqq find(a.parent)$
- 3. **return** *a*. *parent*

Algorithm Theory

Theorem: Using the combined union-by-rank and path compression heuristic, the running time of *m* union-find operations on *n* elements (at most *n* make_set-operations) is

 $\Theta(\boldsymbol{m}\cdot\boldsymbol{\alpha}(\boldsymbol{n})),$

where $\alpha(n)$ is the inverse of the Ackermann function.

- $\alpha(n)$: extremely slowly growing function.
- For all practical purposes $\alpha(n) \leq 4$
 - E.g., as long as n is less than the number of atoms in the universe...

We will show the following slightly weaker statement:

- The running time of m operations is at most $O(m \cdot \log^* n)$
- $\log^* n$ is a function that grows almost as slowly as $\alpha(n)$.

Union-By-Rank and Path Compression

The rank of a node v is still defined in the same way:

- r(v) is initialized to 0
- every time a node u is attached as the child of v in a union operation, if r(u) = r(v), r(v) is increased by 1.
 - The rank is now just an upper bound on the height of a tree.

The two lemmas from before are still true.

Lemma: The subtree rooted at node v has $\geq 2^{r(v)}$ nodes.

• The same argument as before works.

Lemma: Let $u = u_1, u_2, ..., u_k = v$ be the path from a node u to the root v in the tree containing node u. We then have

$$r(u_1) < r(u_2) < \dots < r(u_k).$$

- Node *y* can become parent of *x* during a path compression.
- But then, y was an ancestor of x and we also have r(y) > r(x).

Path compression in union operations:

- We will assume that a union operation consists of two find operations and the constant-time operation for merging the trees.
 - We can then concentrate on the cost and the effect of find operations.

Rank:

- The rank of a node can only change as long as the node is the root of some tree. As soon as the node has a parent, the rank is fixed.
- The number of nodes of rank r is at most $n/2^r$
 - Each such node has a subtree of size $\geq 2^r$ with nodes of smaller rank.

Find operation:

- Consider a node u with parent v and assume that the edge {u, v} is traversed in a find operation.
 - If v is not the root of the tree, u gets a new parent w with r(w) > r(v)
 - Node v will not be the parent of u in the future

Algorithm Theory

Node Buckets

• We place all the non-root nodes in some bucket

As soon as a node is in a bucket, the rank of the node is fixed

Buckets:

Each bucket contains all non-root nodes with ranks between r and $2^r - 1$ for some integer $r \ge 0$.

Maximum number of nodes in bucket:

• Nodes with rank $i \le n/2^i$

• Nodes with rank in
$$[r, 2^r - 1]$$
:

$$\sum_{i=r}^{\infty} \frac{n}{2^i} = \frac{2n}{2^r}$$

Cost of Find Operations

Total cost of all find operations = O(#traversed edges) =

- 1. Number of edges to a root node
 - $\leq O(m)$ (1 per find operation)
- 2. Number of edges to a non-root node in a different bucket
 - $\leq O(m \cdot B)$ ($\leq B$ per find operation)
- 3. Number of edges to a non-root node in same bucket
 - Let's count these kind of edges for each node v in some bucket with ranks between r and $2^r 1$
 - Node v sees every non-root parent w at most once, and when changing the parent, the new parent has a higher rank.
 - The number of such traversed edges for each node is therefore at most the number of ranks in the bucket $\Rightarrow < 2^r$
 - Number of nodes in bucket is $\leq \frac{2n}{2^r}$
 - At most 2n such edges per bucket $\Rightarrow \leq O(n \cdot B)$ cost overall

Overall find cost: $O(m \cdot B)$

Algorithm Theory

Definition:

$$\log^*(n) \coloneqq \begin{cases} 0, & \text{if } n \le 1\\ 1 + \log^*(\log_2 n), & \text{otherwise} \end{cases}$$

- log* n is the number of logarithms we have to take to get a value at most 1.
- log* *n* grows extremely slowly:

 $-\log^{*}(4) = 2, \log^{*}(16) = 3, \log^{*}(65536) = 4, \log^{*}(2^{65536}) = 5$

Claim: The number of buckets is $B = O(\log^* n)$.

- Buckets contain ranks $[r_0, 2^{r_0} 1], [r_1, 2^{r_1} 1], [r_2, 2^{r_2} 1], \dots$, with $r_{i+1} = 2^{r_i}$
- Therefore:
 - $r_0 = \log(r_1) = \log\log(r_2) = \log\log\log(r_3) = \log \ldots \log(r_B)$

Theorem: Using the combined union-by-rank and path compression heuristic, the running time of *m* union-find operations on *n* elements (at most *n* make_set-operations) is

 $\Theta(\boldsymbol{m} \cdot \log^* \boldsymbol{n}).$

- Cost of make-set and union is O(n)
 - When ignoring the find operations that are contained in union operations.
- Cost of find operations is $O(m \cdot B) = O(m \cdot \log^* n)$
 - Including the find operations that are contained in union operations