Algorithm Theory

Chapter 5
Data Structures

Part lll:
Priority Queues, Warm-Up
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Dijkstra’s Algorithm
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Single-Source Shortest Path Problem:

* Given: graph G = (V/, E) with edge weights w(e) > Ofore € E
source nodes €V

* Goal: compute shortest paths fromstoallv eV

Dijkstra’s Algorithm:

Initialize d(s,s) = 0and d(s,v) = o forallv # s
All nodes are unmarked
Get unmarked node u which minimizes d (s, u):

Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}
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4. mark node u unmarked v
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6. Until all nodes are marked
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Implementation of Dijkstra’s Algorithm
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Dijkstra’s Algorithm:

Initialize d(s,s) = 0and d(s,v) = o forallv # s
2. All nodes v # s are unmarked

data structure (DS) to manage all unmarked nodes,
add all nodes to DS with initial distance estimates d(s, v)

3. Get unmarked node u which minimizes d(s, u):
4, mark node u

Get node u from DS with minimum d (s, u),
delete u from DS

unmarked v
5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

Potentially update d(s, v) for all unmarked neighbors of u

6. Until all nodes are marked | update = decrease
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 We saw Kruskal’s algorithm for computing an MST
* An alternative algorithm to compute an MST is Prim’s algorithm

— The algorithm is commonly known as Prim’s algorithm because it was
published by Robert Prim in 1957.

— The algorithm should better be called Jarnik's algorithm because the
Czech mathematician Vojtéch Jarnik found it already 1930.

Prim/Jarnik Algorithm:

Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node
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Implementation of Prim/Jarnik Algorithm
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Start at node s, very similar to Dijkstra’s algorithm :

1. Initialize d(s) = 0andd(v) = o forallv # s
2. All nodes v # s are unmarked

data structure (DS) to manage all unmarked nodes,
add all nodes to DS with initial distance estimates d(v)

3. Get unmarked node u which minimizes d(u):
4, mark node u

Get node u from DS with minimum d(u),
delete u from DS

unmarked v
5. Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

Potentially update d(v) for all unmarked neighbors of u

6. Until all nodes are marked | update = decrease
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Priority Queue / Heap
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» Stores (key,data) pairs
— like a dictionary, but with a different set of operations

* Initialize-Heap: creates new empty heap

* Is-Empty: returns true if heap is empty

* Insert(key,data): inserts (key,data)-pair, returns pointer to entry
e Get-Min: returns (key,data)-pair with minimum key

* Delete-Min: deletes (and returns) minimum (key,data)-pair

— has to be consistent with get-min operation
* Decrease-Key(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one
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Implementation of Dijkstra’s Algorithm ;
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Dijkstra’s Algorithm:

Initialize d(s,s) = 0and d(s,v) = o forallv # s
2. All nodes v # s are unmarked

create empty priority queue 0,
add all nodes to Q with initial key d (s, v)

3. Get unmarked node u which minimizes d(s, u):
4, mark node u

u = (.delete_min()

unmarked v
5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

For all unmarked neighbors v of u: potentially call Q.decrease_key

6. Until all nodes are marked

ﬁ until Q is empty
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Implementation of Prim/Jarnik Algorithm
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Start at node s, very similar to Dijkstra’s algorithm :

1. Initialize d(s) = 0andd(v) = o forallv # s
2. All nodes v # s are unmarked

create empty priority queue 0,
add all nodes to Q with initial key d(v)

3. Get unmarked node u which minimizes d(u):

4, mark node u

u = (.delete_min()

unmarked v
5. Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

For all unmarked neighbors v of u: potentially call Q.decrease_key

6. Until all nodes are marked

ﬁ until Q is empty
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Analysis

Number of priority queue operations for Dijkstra:

* |nitialize-Heap: 1

* [s-Empty: n
* Insert: n
* Get-Min: 0
* Delete-Min: n

* Decrease-Key: < m

* Merge: 0

Algorithm Theory

Assumption:

n = |V| (humber of nodes)
m = |E| (humber of edges)

e m=>2n—1

#Decrease-Key:

Always for an unmarked neighbor v
of a newly marked node u

— < 1 decrease-key per edge

Fabian Kuhn
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Basic Priority Queue Implementation
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Binary Heap:

* Implementation as a binary tree with the min-heap property

* A tree has the min-heap property if in every subtree, the root has the
smallest key.

* Tree is always as balanced as possible

— All levels except for bottom level are full,
bottom-most level is filled from left to right.

* insert, delete-min, decrease-key all have worst-case time O(logn).
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Array Implementation of Binary Heaps
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Store everything in an array at positions 1 ton
* This is possible because the binary tree is perfectly balanced

22

4(11) 5(13) 6(23) 7(9)
8(17) 9(14) 1016) 11(17) 12(24)

 For a node at position i
— Left child is at position j = 2 - i, right child is at positionj =2 -i + 1
— Parent is a position j = i/2 (integer division, i.e., j = |i/2])
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Can We Do Better?
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* Cost of Dijkstra with complete binary min-heap implementation:

O(m -logn)

e Binary heap:
insert, delete-min, and decrease-key cost O (logn)

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least { (nlogn).

* But maybe we can improve decrease-key and one of the other
two operations?
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