
Algorithm Theory

Chapter 5

Data Structures

Part III:
Priority Queues, Warm-Up

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Dijkstra’s Algorithm

Single-Source Shortest Path Problem:

• Given: graph 𝐺 = (𝑉, 𝐸) with edge weights 𝑤 𝑒 ≥ 0 for 𝑒 ∈ 𝐸
source node 𝑠 ∈ 𝑉

• Goal: compute shortest paths from 𝑠 to all 𝑣 ∈ 𝑉

Dijkstra’s Algorithm:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

6. Until all nodes are marked

unmarked 𝑣

Algorithm Theory Fabian Kuhn 3

Example

∞

𝟎

∞

∞

∞

∞

∞

∞

∞

∞

∞

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 4

Example

𝟏

𝟎

∞

∞

∞

𝟏𝟗

∞

𝟏𝟕

𝟐𝟎

∞

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 5

Example

𝟏

𝟎

𝟏𝟒

∞

𝟒

𝟏𝟗

∞

𝟕

𝟐𝟎

∞

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 6

Example

𝟏

𝟎

𝟏𝟑

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

∞

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 7

Example

𝟏

𝟎

𝟏𝟑

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

𝟑𝟕

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 8

Example

𝟏

𝟎

𝟗

∞

𝟒

𝟏𝟗

𝟓

𝟕

𝟐𝟎

𝟑𝟕

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 9

Example

𝟏

𝟎

𝟗

𝟏𝟐

𝟒

𝟏𝟏

𝟓

𝟕

𝟐𝟎

𝟏𝟗

𝟏𝟖

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 10

Example

𝟏

𝟎

𝟗

𝟏𝟐

𝟒

𝟏𝟏

𝟓

𝟕

𝟏𝟑

𝟏𝟗

𝟏𝟐

3

13
4

9

1

10

32

23

3

3

8
2

20

118

17

1

199

1

6 2
2

Algorithm Theory Fabian Kuhn 11

Implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

6. Until all nodes are marked

data structure (DS) to manage all unmarked nodes,
add all nodes to DS with initial distance estimates 𝑑 𝑠, 𝑣

Get node 𝑢 from DS with minimum 𝑑 𝑠, 𝑢 ,
delete 𝑢 from DS

Potentially update 𝑑 𝑠, 𝑣 for all unmarked neighbors of 𝑢

update = decrease

unmarked 𝑣

Algorithm Theory Fabian Kuhn 12

Minimum Spanning Trees

• We saw Kruskal’s algorithm for computing an MST

• An alternative algorithm to compute an MST is Prim’s algorithm
– The algorithm is commonly known as Prim’s algorithm because it was

published by Robert Prim in 1957.

– The algorithm should better be called Jarník's algorithm because the
Czech mathematician Vojtěch Jarník found it already 1930.

Prim/Jarník Algorithm:

1. Start with any node 𝑣 (𝑣 is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge 𝑒 connecting the current component with any other node

Algorithm Theory Fabian Kuhn 13

Implementation of Prim/Jarník Algorithm

Start at node 𝒔, very similar to Dijkstra’s algorithm :

1. Initialize 𝑑 𝑠 = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑣 = min 𝑑 𝑣 , 𝑤 𝑒

6. Until all nodes are marked

data structure (DS) to manage all unmarked nodes,
add all nodes to DS with initial distance estimates 𝑑 𝑣

Get node 𝑢 from DS with minimum 𝑑 𝑢 ,
delete 𝑢 from DS

Potentially update 𝑑 𝑣 for all unmarked neighbors of 𝑢

update = decrease

unmarked 𝑣

Algorithm Theory Fabian Kuhn 14

Priority Queue / Heap

• Stores (key,data) pairs
– like a dictionary, but with a different set of operations

• Initialize-Heap: creates new empty heap

• Is-Empty: returns true if heap is empty

• Insert(key,data): inserts (key,data)-pair, returns pointer to entry

• Get-Min: returns (key,data)-pair with minimum key

• Delete-Min: deletes (and returns) minimum (key,data)-pair
– has to be consistent with get-min operation

• Decrease-Key(entry,newkey): decreases key of entry to newkey

• Merge: merges two heaps into one

Algorithm Theory Fabian Kuhn 15

Implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

6. Until all nodes are marked

unmarked 𝑣

create empty priority queue 𝑄,
add all nodes to 𝑄 with initial key 𝑑 𝑠, 𝑣

𝑢 ≔ 𝑄.delete_min()

For all unmarked neighbors 𝑣 of 𝑢: potentially call 𝑄.decrease_key

until 𝑄 is empty

Algorithm Theory Fabian Kuhn 16

Implementation of Prim/Jarník Algorithm

Start at node 𝒔, very similar to Dijkstra’s algorithm :

1. Initialize 𝑑 𝑠 = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑣 = min 𝑑 𝑣 , 𝑤 𝑒

6. Until all nodes are marked

unmarked 𝑣

create empty priority queue 𝑄,
add all nodes to 𝑄 with initial key 𝑑 𝑣

𝑢 ≔ 𝑄.delete_min()

For all unmarked neighbors 𝑣 of 𝑢: potentially call 𝑄.decrease_key

until 𝑄 is empty

Algorithm Theory Fabian Kuhn 17

Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge:

𝟏

𝒏

𝒏

𝟎

≤ 𝒎

𝒏

𝟎

Assumption:

𝑛 = 𝑉 (number of nodes)
𝑚 = 𝐸 (number of edges)

• 𝑚 ≥ 𝑛 − 1

#Decrease-Key:

Always for an unmarked neighbor 𝑣
of a newly marked node 𝑢

⟹≤ 1 decrease-key per edge

Algorithm Theory Fabian Kuhn 18

Binary Heap:

• Implementation as a binary tree with the min-heap property

• A tree has the min-heap property if in every subtree, the root has the
smallest key.

• Tree is always as balanced as possible

– All levels except for bottom level are full,
bottom-most level is filled from left to right.

• insert, delete-min, decrease-key all have worst-case time 𝑶 𝐥𝐨𝐠𝒏 .

18

Basic Priority Queue Implementation

3

10 7

12 2313 9

12 14 14

Algorithm Theory Fabian Kuhn 19

Store everything in an array at positions 𝟏 to 𝒏

• This is possible because the binary tree is perfectly balanced

• For a node at position 𝑖

– Left child is at position 𝑗 = 2 ⋅ 𝑖, right child is at position 𝑗 = 2 ⋅ 𝑖 + 1

– Parent is a position 𝑗 = Τ𝑖 2 (integer division, i.e., 𝑗 = Τ𝑖 2)

19

Array Implementation of Binary Heaps

3

10 7

11 2313 9

17 14 16 2417

1

2 3

4 5 6 7

8 9 10 11 12

Algorithm Theory Fabian Kuhn 20

Can We Do Better?

• Cost of Dijkstra with complete binary min-heap implementation:

𝑂 𝑚 ⋅ log 𝑛

• Binary heap:
insert, delete-min, and decrease-key cost 𝑂(log 𝑛)

• One of the operations insert or delete-min must cost Ω(log 𝑛):
– Heap-Sort:

Insert 𝑛 elements into heap, then take out the minimum 𝑛 times

– (Comparison-based) sorting costs at least Ω(𝑛 log 𝑛).

• But maybe we can improve decrease-key and one of the other
two operations?

