

Algorithm Theory

Chapter 5 Data Structures

Part IV: Fibonacci Heaps, Algorithm Description

Structure:

A Fibonacci heap *H* consists of a collection of trees satisfying the **min-heap** property.

Min-Heap Property:

Key of a node $v \leq$ keys of all nodes in any sub-tree of v

Structure:

A Fibonacci heap *H* consists of a collection of trees satisfying the min-heap property.

Variables:

- *H.min*: root of the tree containing the (a) minimum key
- *H.rootlist*: circular, doubly linked, unordered list containing the roots of all trees
- *H.size*: number of nodes currently in *H*

Lazy Merging:

- To reduce the number of trees, sometimes, trees need to be merged
- Lazy merging: Do not merge as long as possible...

Algorithm Theory

Trees in Fibonacci Heaps

- *v*. *child*: points to circular, doubly linked and unordered list of the children of *v*
- *v*.*left*, *v*.*right*: pointers to siblings (in doubly linked list)
- *v.mark*: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

Algorithm Theory

Example

Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• $H.rootlist \coloneqq H.min \coloneqq null$

Merge heaps H and H':

- concatenate root lists
- update *H*.*min*

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

• return *H*. min

6

Operation Delete-Min

Delete the node with minimum key from *H* and return its element:

H.min

- 1. $m \coloneqq H.min$;
- 2. **if** H.size > 0 **then**
- 3. remove *H*.*min* from *H*.*rootlist*;
- 4. add *H.min.child* (list) to *H.rootlist*
- 5. H.Consolidate();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. **return** *m*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): number of children of v (degree of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap *H*:

• rank(H): maximum degree (#children) of any node in H

Assumption (*n*: number of nodes in *H*):

 $rank(H) \leq D(n)$

- for a known function D(n)

Merging Two Trees

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

• Assume: min-key of $T < \min$ -key of T'

Algorithm Theory

Algorithm Theory

Algorithm Theory

Consolidation of Root List

- 8. $A[rank(T)] \coloneqq T$
- 9. Create new *H*.*rootlist* and *H*.*min*

Algorithm Theory

Operation Decrease-Key

FREBURG

Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return
- 2. $v.key \coloneqq x;$
- 3. update H.min to point to v if necessary
- 4. if $v \in H.rootlist \lor x \ge v.parent.key$ then return
- 5. repeat
- 6. $parent \coloneqq v.parent$
- 7. H.cut(v)
- 8. $v \coloneqq parent$
- 9. until $\neg(v.mark) \lor v \in H.rootlist$
- 10. if $v \notin H$.rootlist then v.mark := true

Operation Cut(v)

Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- 1. if $v \notin H.rootlist$ then
- 2. // cut the link between v and its parent
- 3. $rank(v.parent) \coloneqq rank(v.parent) 1;$
- 4. remove *v* from *v*. *parent*. *child* (list)
- 5. $v.parent \coloneqq null;$
- 6. add v to H. rootlist; v.mark := false;

Decrease-Key Example

Fibonacci Heaps Marks

- Nodes in the root list (the tree roots) are always unmarked
 → If a node is added to the root list (insert, decrease-key), the mark of the node is set to false.
- Nodes not in the root list can only get marked when a subtree is cut in a decrease-key operation
- A node v is marked if and only if v is not in the root list and v
 has lost a child since v was attached to its current parent
 - a node can only change its parent by being moved to the root list

History of a node v:

- Hence, the boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.
- Nodes v in the root list always have v.mark = false