

Algorithm Theory

Chapter 5 Data Structures

Part V: Fibonacci Heaps, Amortized Analysis

Fabian Kuhn

Cost of Delete-Min & Decrease-Key

Delete-Min:

- Delete min. root r and add r. child to H. rootlist time: 0(1)
- 2. Consolidate *H*.*rootlist*

time: O(length of H.rootlist + D(n))

• Step 2 can potentially be linear in *n* (size of *H*)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node vtime: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in *n*

Remark: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus, an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?

 \Rightarrow requires **amortized analysis**

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case and amortized cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost **0**(1)
- Starting with an empty heap, any sequence of n operations with at most n_d delete-min operations has total cost (time)

 $T = O(n + n_d \log n).$

- We will now need the marks...
- Cost for Dijkstra & Prim/Jarník: $O(m + n \log n)$

Cycle of a node:

- Node v is removed from root list and linked to a node
 v.mark = false
- 2. Child node *u* of *v* is cut and added to root list

 $v.mark \coloneqq true$

3. Second child of v is cut

node v is cut as well and moved to root list $v.mark \coloneqq false$

The boolean value v.mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

System state characterized by two parameters:

- *R*: number of trees (length of *H*.*rootlist*)
- M: number of marked nodes (not in the root list)

Potential function:

 $\Phi \coloneqq R + 2M$

• $R = 7, M = 2 \rightarrow \Phi = 11$

Actual Time of Operations

- Operations: *initialize-heap, is-empty, insert, get-min, merge* actual time: 0(1)
 - Normalize unit time such that

 $t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$

- Operation *delete-min*:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

 $t_{del-min} \leq D(n) + \text{ length of } H.rootlist$

- Operation **descrease-key**:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

 $t_{decr-key} \leq$ length of path to next unmarked ancestor

Amortized Times

Assume operation *i* is of type:

• initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

• is-empty, get-min:

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$
- merge:
 - Actual time: $t_i \leq 1$
 - combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
 - amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

Amortized Time of Insert

Assume that operation *i* is an *insert* operation:

- Actual time: $t_i \leq 1$
- Potential function:
 - M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
 - *R* grows by 1 (one element is added to the root list)

 $\begin{aligned} M_i &= M_{i-1}, & R_i &= R_{i-1} + 1 \\ \Phi_i &= \Phi_{i-1} + 1 \end{aligned}$

• Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2$$

Amortized Time of Delete-Min

Assume that operation *i* is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H.rootlist|$

Potential function $\Phi = R + 2M$:

- R: changes from |H.rootlist| to at most D(n) + 1
- *M*: (# of marked nodes that are not in the root list)
 - Number of marks does not increase

$$\begin{split} M_i &= M_{i-1}, \quad R_i \leq R_{i-1} + D(n) + 1 - |H.rootlist| \\ \Phi_i &\leq \Phi_{i-1} + D(n) + 1 - |H.rootlist| \end{split}$$

Amortized Time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \leq 2D(n) + 1$$

Amortized Time of Decrease-Key

Assume that operation i is a *decrease-key* operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

• Assume, node u and nodes u_1, \ldots, u_k are moved to root list

 $- u_1, \dots, u_k$ are marked and moved to root list, v. mark is set to true

$\sim \frac{v}{new}$ mark	marks	root list
\sim u_k	Removed marks:	Added to root list:
$\langle u_{k-1} \rangle$	u_1 ,, u_k	u, u_1, \dots, u_k
ark removed	(and u , if u is marked)	\mathbf{D} \mathbf{D} $-\mathbf{L}$ $+1$
	Added mark: v	$\kappa_i - \kappa_{i-1} = \kappa + 1$
	$M_i - M_{i-1} \leq -(k-1)$	
$\mathbf{d} u$		

Algorithm Theory

Amortized Time of Decrease-Key

Assume that operation *i* is a *decrease-key* operation at node *u*:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u₁, ..., u_k are moved to root list
 u₁, ..., u_k are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k + 1$, M grows by 1 and is decreased by $\geq k$

 $\begin{array}{ll} R_i \leq R_{i-1} + k + 1, & M_i \leq M_{i-1} + 1 - k \\ \Phi_i \leq \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k \end{array}$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le k + 1 + 3 - k = 4$$

Complexities Fibonacci Heap

- Initialize-Heap: **0**(1)
- Is-Empty: **0**(1)
- Insert: **0**(1)
- Get-Min: **0**(1)
- Delete-Min: O(D(n)) > amortized
- Decrease-Key: 0(1)
- Merge (heaps of size m and $n, m \le n$): O(1)
- How large can D(n) get?

Rank of Children

Lemma:

Consider a node v of rank k and let u_1, \ldots, u_k be the children of v in the order in which they were linked to v. Then,

 $rank(u_i) \geq i-2.$

Proof:

When u_i is added, v already has children u_1, \ldots, u_{i-1} :

$$\Rightarrow rank(u_i) \ge i - 1 \text{ when}$$

 $u_i \text{ is linked to } v.$

Each node can lose

at most one child:

Fibonacci Numbers:

 $F_0 = 0$, $F_1 = 1$, $\forall k \ge 2: F_k = F_{k-2} + F_{k-1}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Proof:

• *S_k*: minimum size of the sub-tree of a node of rank *k*

Fabian Kuhn

Size of Trees

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall k \ge 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$
 (F₀ = 0, F₁ = 1)

Proof of claim (by induction on k):

- Base case (k = 0): $F_2 = 1 + \sum_{i=0}^{\infty} F_i = 1 + F_0 = 1$
- $F_{k+2} = F_k + F_{k+1} = F_k + 1 + \sum_{i=0}^{k-1} F_i = 1 + \sum_{i=0}^{k} F_i$ I.H.: $F_{k+1} = 1 + \sum_{i=1}^{k-1} F_i$ Induction step (k > 0):

Size of Trees

$$S_0 = 1, S_1 = 2, \forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^k F_i$$

Claim of lemma: $S_k \ge F_{k+2}$

Proof by induction on *k*:

- Base case (k = 0, k = 1): $S_0 \ge F_2 = 1$ $S_1 \ge F_3 = 2$
- Induction step (k > 1):

Size of Trees

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

 $D(n) = O(\log n)$.

Proof:

• The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

	Binary Heap	Fibonacci Heap
initialize	0 (1)	0 (1)
insert	$O(\log n)$	0 (1)
get-min	0 (1)	0 (1)
delete-min	0 (log <i>n</i>)	0 (log n) *
decrease-key	0 (log <i>n</i>)	0 (1) *
is-empty	0 (1)	0 (1)

