

Algorithm Theory

Chapter 6 Graph Algorithms

Part I:

Maximum Flow: Ford Fulkerson Algorithm

Fabian Kuhn

Graphs

Extremely important concept in computer science

Graph G = (V, E)

- V: node (or vertex) set
- $E \subseteq V^2$: edge set
 - undirected graph: we often think of edges as sets of size 2 (e.g., $\{u, v\}$)
 - directed graph (digraph): edges are sometimes also called arcs
 - simple graph: no self-loops, no multiple edges
 - weighted graph: (positive) weight on edges (or nodes)
- (simple) path: sequence v_0, \dots, v_k of nodes such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, \dots, k-1\}$

Many real-world problems can be formulated as optimization problems on graphs.

Graph Optimization: Examples

UNI

Minimum spanning tree (MST):

• Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

• Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):

• Compute shortest TSP path/tour in weighted graph

Vertex coloring:

- Color the nodes such that neighbors get different colors
- Goal: minimize the number of colors

Maximum matching:

- Matching: set of pair-wise non-adjacent edges
- Goal: maximize the size of the matching

Algorithm Theory

Network Flow

Flow Network:

- Directed graph $G = (V, E), E \subseteq V^2$
- Each (directed) edge e has a capacity $c_e \ge 0$
 - Amount of flow (traffic) that the edge can carry
- A single source node $s \in V$ and a single sink node $t \in V$
 - Source s has only outgoing edges, sink t has only incoming edges

Flow: (informally)

• Traffic from s to t such that each edge carries at most its capacity

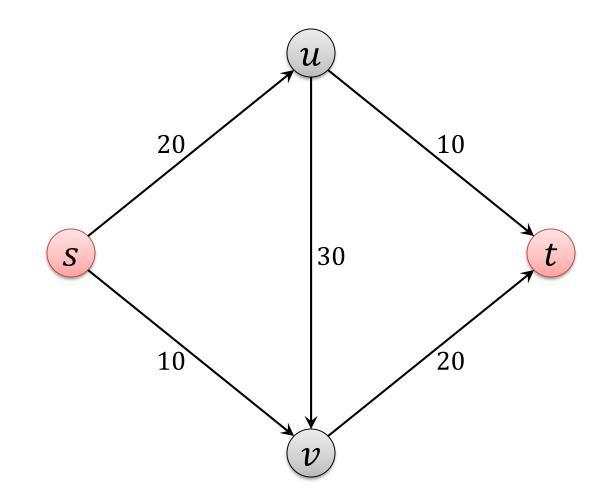
Examples:

- Highway system: edges are highways, flow is the traffic
- Computer network: edges are network links, flow is data
- Fluid network: edges are pipes that carry liquid

Algorithm Theory

Fabian Kuhn

Example: Flow Network



Network Flow: Definition

Flow: function $f: E \to \mathbb{R}_{\geq 0}$

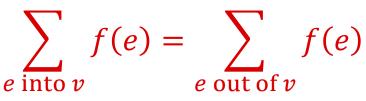
• f(e) is the amount of flow carried by edge e

Capacity Constraints:

• For each edge $e \in E$, $f(e) \le c_e$

Flow Conservation:

• For each node $v \in V \setminus \{s, t\}$,



Flow Value:

$$|f| \coloneqq \sum_{e \text{ out of } s} f((s, u)) = \sum_{e \text{ into } t} f((v, t))$$

Notation

We define:

$$f^{\text{in}}(v) \coloneqq \sum_{e \text{ into } v} f(e), \qquad f^{\text{out}}(v) \coloneqq \sum_{e \text{ out of } v} f(e)$$

For a set $A \subseteq V$: $f^{\text{in}}(A) \coloneqq \sum_{e \text{ into } A} f(e), \qquad f^{\text{out}}(A) \coloneqq \sum_{e \text{ out of } S} f(e)$

Flow conservation: $\forall v \in V \setminus \{s, t\}$: $f^{in}(v) = f^{out}(v)$

Flow value: $|f| = f^{out}(s) = f^{in}(t)$

For simplicity: Assume that all capacities are positive integers

Algorithm Theory

Fabian Kuhn

Maximum Flow:

Given a flow network, find a flow of maximum possible value

- Classic graph optimization problem
- Many applications (also beyond the obvious ones)
- Requires new algorithmic techniques

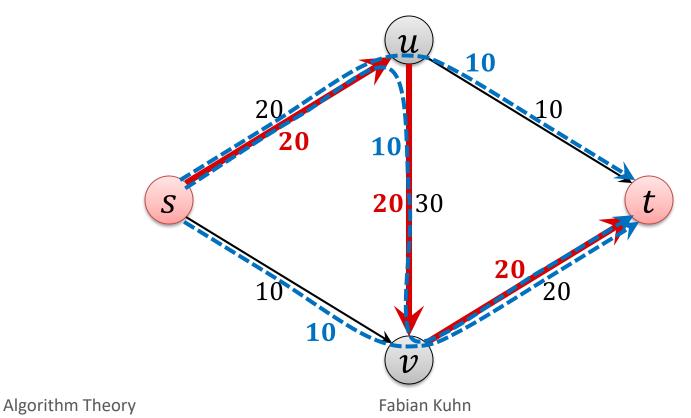
Maximum Flow: Greedy?

UN FREIBURG

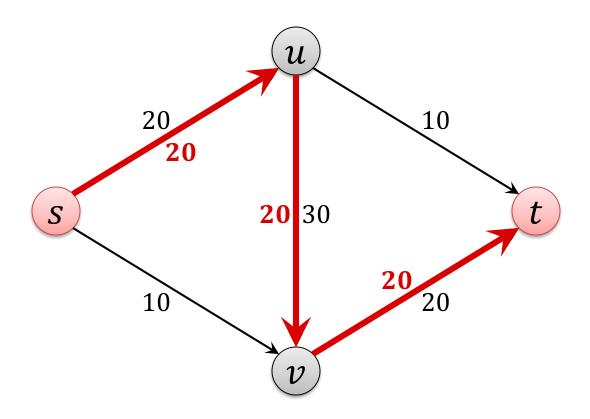
Does greedy work?

A natural greedy algorithm:

• As long as possible, find an *s*-*t*-path with free capacity and add as much flow as possible to the path



Improving the Greedy Solution



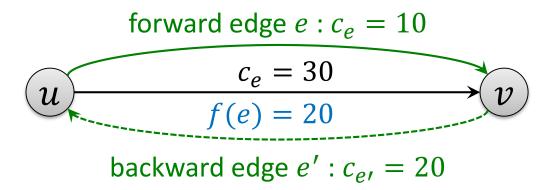
- Try to push 10 units of flow on edge (s, v)
- Too much incoming flow at v: reduce flow on edge (u, v)
- Add that flow on edge (*u*, *t*)

Residual Graph

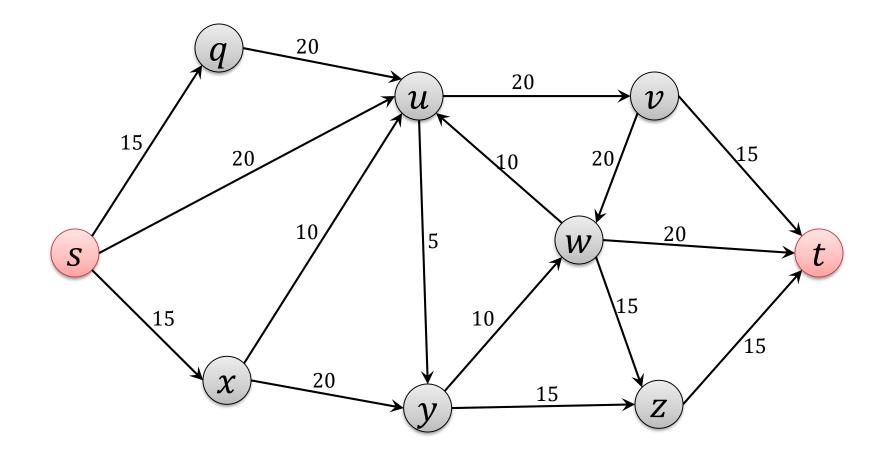
Given a flow network G = (V, E) with capacities c_e (for $e \in E$)

For a flow f on G, define directed graph $G_f = (V_f, E_f)$ as follows:

- Node set $V_f = V$
- For each edge e = (u, v) in E, there are two edges in E_f :
 - forward edge e = (u, v) with residual capacity $c_e f(e)$
 - backward edge e' = (v, u) with residual capacity f(e)

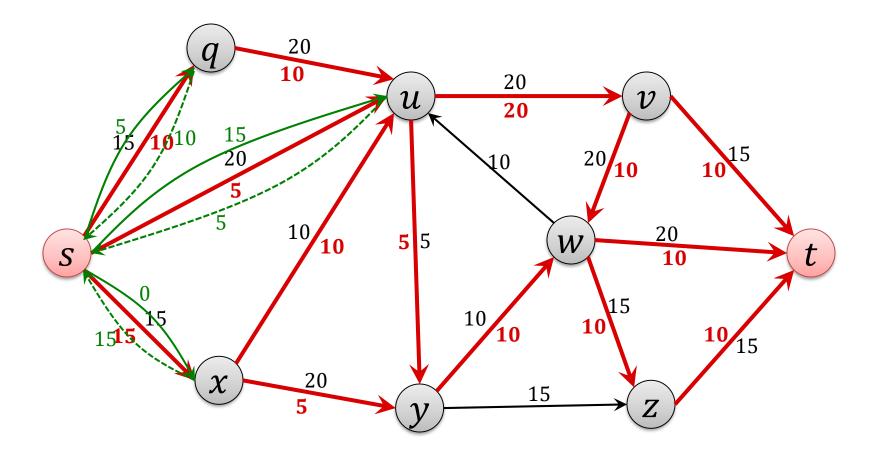


Residual Graph: Example

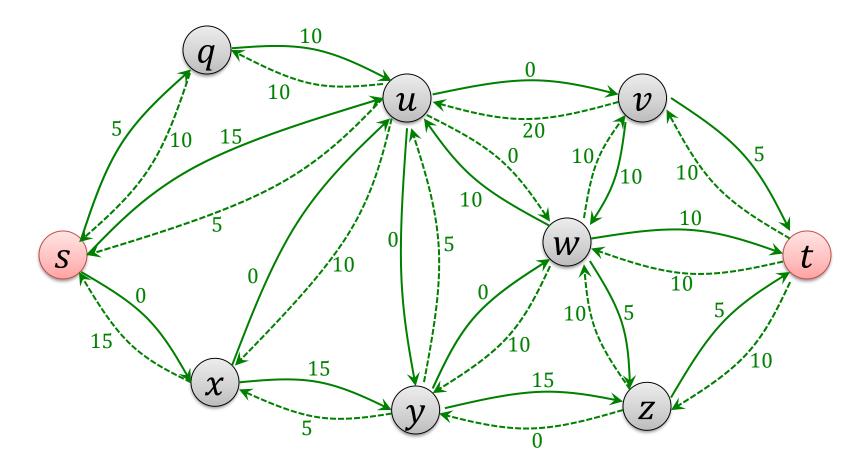


Residual Graph: Example

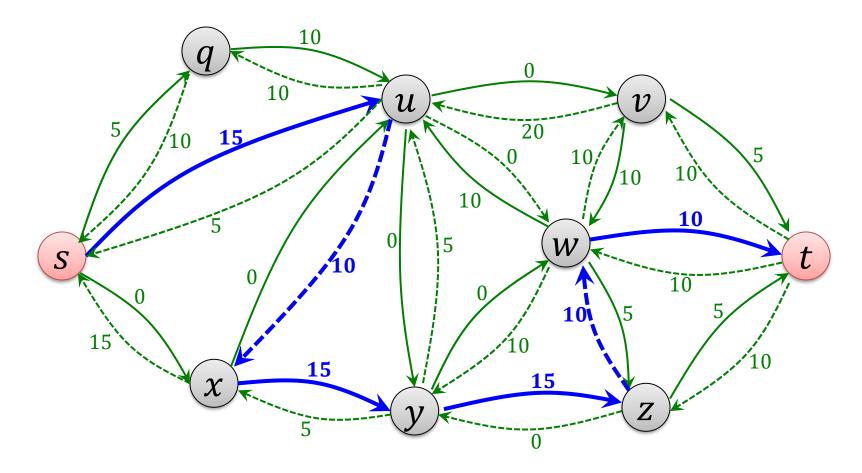
Flow *f*



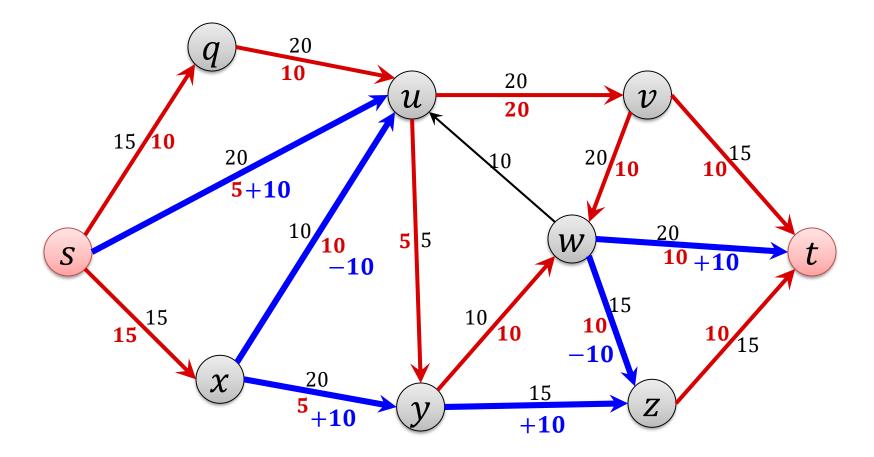
Residual Graph G_f



Residual Graph G_f

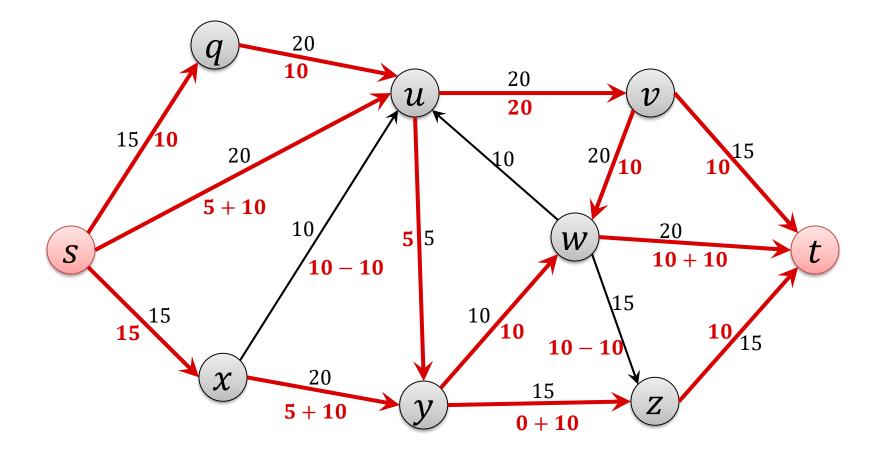


Augmenting Path



Augmenting Path

New Flow



FREIBURG

Definition:

An augmenting path P is a (simple) s-t-path on the residual graph G_f on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the augmenting path P

Augment flow f to get flow f':

• For every forward edge (u, v) on P:

 $f'((u,v)) \coloneqq f((u,v)) + \text{bottleneck}(P,f)$

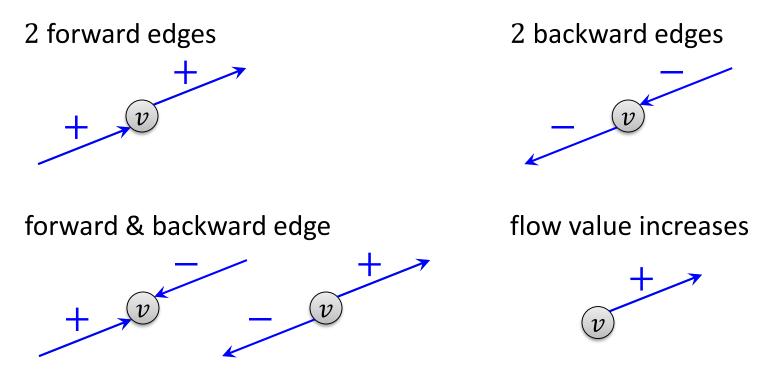
• For every backward edge (u, v) on P:

 $f'((v,u)) \coloneqq f((v,u)) - bottleneck(P,f)$

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is |f'| = |f| + bottleneck(P, f).

Proof:



Ford-Fulkerson Algorithm

- Improve flow using an augmenting path as long as possible:
- 1. Initially, f(e) = 0 for all edges $e \in E$, $G_f = G$
- 2. while there is an augmenting s-t-path P in G_f do
- 3. Let P be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \operatorname{augment}(f, P);$
- 5. update f to be f';
- 6. update the residual graph G_f
- 7. **end**;