
Algorithm Theory

Chapter 6

Graph Algorithms

Part I:
Maximum Flow: Ford Fulkerson Algorithm

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Graphs

Extremely important concept in computer science

Graph 𝑮 = (𝑽, 𝑬)

• 𝑉: node (or vertex) set

• 𝐸 ⊆ 𝑉2: edge set
– undirected graph: we often think of edges as sets of size 2 (e.g., {𝑢, 𝑣})

– directed graph (digraph): edges are sometimes also called arcs

– simple graph: no self-loops, no multiple edges

– weighted graph: (positive) weight on edges (or nodes)

• (simple) path: sequence 𝑣0, … , 𝑣𝑘 of nodes such that
𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸 for all 𝑖 ∈ {0,… , 𝑘 − 1}

• …

Many real-world problems can be formulated as
optimization problems on graphs.

Algorithm Theory Fabian Kuhn 3

Graph Optimization: Examples

Minimum spanning tree (MST):

• Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

• Compute (length) of shortest paths (single source, all pairs, …)

Traveling salesperson (TSP):

• Compute shortest TSP path/tour in weighted graph

Vertex coloring:

• Color the nodes such that neighbors get different colors

• Goal: minimize the number of colors

Maximum matching:

• Matching: set of pair-wise non-adjacent edges

• Goal: maximize the size of the matching

Algorithm Theory Fabian Kuhn 4

Network Flow

Flow Network:

• Directed graph 𝐺 = (𝑉, 𝐸), 𝐸 ⊆ 𝑉2

• Each (directed) edge 𝑒 has a capacity 𝑐𝑒 ≥ 0
– Amount of flow (traffic) that the edge can carry

• A single source node 𝑠 ∈ 𝑉 and a single sink node 𝑡 ∈ 𝑉
– Source 𝑠 has only outgoing edges, sink 𝑡 has only incoming edges

Flow: (informally)

• Traffic from 𝑠 to 𝑡 such that each edge carries at most its capacity

Examples:

• Highway system: edges are highways, flow is the traffic

• Computer network: edges are network links, flow is data

• Fluid network: edges are pipes that carry liquid

Algorithm Theory Fabian Kuhn 5

Example: Flow Network

𝑠 𝑡

𝑢

𝑣

20

20

10

10

30

Algorithm Theory Fabian Kuhn 6

Network Flow: Definition

Flow: function 𝒇: 𝑬 → ℝ≥𝟎

• 𝑓(𝑒) is the amount of flow carried by edge 𝑒

Capacity Constraints:

• For each edge 𝑒 ∈ 𝐸, 𝑓 𝑒 ≤ 𝑐𝑒

Flow Conservation:

• For each node 𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 ,

෍

𝑒 into 𝑣

𝑓 𝑒 = ෍

𝑒 out of 𝑣

𝑓 𝑒

Flow Value:

|𝑓| ≔ ෍

𝑒 out of 𝑠

𝑓 𝑠, 𝑢 = ෍

𝑒 into 𝑡

𝑓 𝑣, 𝑡

Algorithm Theory Fabian Kuhn 7

Notation

We define:

𝑓in 𝑣 ≔ ෍

𝑒 into 𝑣

𝑓 𝑒 , 𝑓out 𝑣 ≔ ෍

𝑒 out of 𝑣

𝑓(𝑒)

For a set 𝑨 ⊆ 𝑽:

𝑓in 𝐴 ≔ ෍

𝑒 into 𝐴

𝑓 𝑒 , 𝑓out 𝐴 ≔ ෍

𝑒 out of 𝑆

𝑓(𝑒)

Flow conservation: ∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 : 𝑓in 𝑣 = 𝑓out(𝑣)

Flow value: 𝑓 = 𝑓out 𝑠 = 𝑓in(𝑡)

For simplicity: Assume that all capacities are positive integers

Algorithm Theory Fabian Kuhn 8

The Maximum-Flow Problem

Maximum Flow:

Given a flow network, find a flow of maximum possible value

• Classic graph optimization problem

• Many applications (also beyond the obvious ones)

• Requires new algorithmic techniques

Algorithm Theory Fabian Kuhn 9

Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

• As long as possible, find an 𝑠-𝑡-path with free capacity and
add as much flow as possible to the path

𝑠 𝑡

𝑢

𝑣

20

20

10

10

30

𝟐𝟎

𝟐𝟎

𝟐𝟎

𝟏𝟎

𝟏𝟎

𝟏𝟎

Algorithm Theory Fabian Kuhn 10

Improving the Greedy Solution

• Try to push 10 units of flow on edge (𝑠, 𝑣)

• Too much incoming flow at 𝑣: reduce flow on edge (𝑢, 𝑣)

• Add that flow on edge (𝑢, 𝑡)

𝑠 𝑡

𝑢

𝑣

20

20

10

10

30

𝟐𝟎

𝟐𝟎

𝟐𝟎

Algorithm Theory Fabian Kuhn 11

Residual Graph

Given a flow network 𝐺 = 𝑉, 𝐸 with capacities 𝑐𝑒 (for 𝑒 ∈ 𝐸)

For a flow 𝑓 on 𝐺, define directed graph 𝐺𝑓 = (𝑉𝑓, 𝐸𝑓) as follows:

• Node set 𝑉𝑓 = 𝑉

• For each edge 𝑒 = (𝑢, 𝑣) in 𝐸, there are two edges in 𝐸𝑓:

– forward edge 𝑒 = (𝑢, 𝑣) with residual capacity 𝑐𝑒 − 𝑓(𝑒)

– backward edge 𝑒′ = (𝑣, 𝑢) with residual capacity 𝑓(𝑒)

𝑢 𝑣
𝑐𝑒 = 30

𝑓(𝑒) = 20

forward edge 𝑒 : 𝑐𝑒 = 10

backward edge 𝑒′ : 𝑐𝑒′ = 20

Algorithm Theory Fabian Kuhn 12

Residual Graph: Example

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20

Algorithm Theory Fabian Kuhn 13

Residual Graph: Example

Flow 𝒇

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20
𝟏𝟎

𝟓

𝟏𝟎

𝟓

𝟏𝟓

𝟓

𝟏𝟎

𝟏𝟎

𝟏𝟎

𝟐𝟎

𝟏𝟎

𝟏𝟎

𝟏𝟎

𝟏𝟎

5
10 15

5

0

15

Algorithm Theory Fabian Kuhn 14

Residual Graph: Example

Residual Graph 𝑮𝒇

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

5
10 15

5

0

15

10
0

0 5

0

10
15

15

0

10

10

0
5

20

10

10

10

10
10 10

10

10

0

5 5

5

Algorithm Theory Fabian Kuhn 15

Augmenting Path

Residual Graph 𝑮𝒇

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

5
10 𝟏𝟓

5

0

15

𝟏𝟎
0

0 5

0

10
𝟏𝟓

𝟏𝟓

0

10

10

0
5

20

𝟏𝟎

10

10

10
10 10

10

𝟏𝟎

0

5 5

5

Algorithm Theory Fabian Kuhn 16

Augmenting Path

Augmenting Path

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20
𝟏𝟎

𝟓

𝟏𝟎

𝟓

𝟏𝟓

𝟓

𝟏𝟎

𝟏𝟎

𝟏𝟎

𝟐𝟎

𝟏𝟎

𝟏𝟎

𝟏𝟎

𝟏𝟎

+𝟏𝟎

+𝟏𝟎 +𝟏𝟎

+𝟏𝟎−𝟏𝟎

−𝟏𝟎

Algorithm Theory Fabian Kuhn 17

Augmenting Path

New Flow

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20
𝟏𝟎

𝟓 + 𝟏𝟎

𝟏𝟎 − 𝟏𝟎

𝟓 + 𝟏𝟎

𝟏𝟓

𝟓

𝟏𝟎

𝟏𝟎 + 𝟏𝟎

𝟏𝟎

𝟐𝟎

𝟏𝟎

𝟏𝟎 − 𝟏𝟎

𝟏𝟎

𝟏𝟎

𝟎 + 𝟏𝟎

Algorithm Theory Fabian Kuhn 18

Augmenting Path

Definition:
An augmenting path 𝑃 is a (simple) 𝑠-𝑡-path on the residual
graph 𝐺𝑓 on which each edge has residual capacity > 0.

bottleneck(𝑃, 𝑓): minimum residual capacity on any edge of the
augmenting path 𝑃

Augment flow 𝒇 to get flow 𝒇′:

• For every forward edge (𝑢, 𝑣) on 𝑃:

𝒇′ 𝒖, 𝒗 ≔ 𝒇 𝒖, 𝒗 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇

• For every backward edge (𝑢, 𝑣) on 𝑃:

𝒇′ 𝒗, 𝒖 ≔ 𝒇 𝒗, 𝒖 − 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝑷, 𝒇)

Algorithm Theory Fabian Kuhn 19

Augmented Flow

Lemma: Given a flow 𝑓 and an augmenting path 𝑃, the resulting
augmented flow 𝑓′ is legal and its value is

𝒇′ = 𝒇 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇 .

Proof:

𝑣

2 forward edges

+

+
𝑣

2 backward edges

−

−

𝑣

forward & backward edge

+

−
𝑣−

+

𝑣

flow value increases

+

Algorithm Theory Fabian Kuhn 20

Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible:

1. Initially, 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸, 𝐺𝑓 = 𝐺

2. while there is an augmenting 𝑠-𝑡-path 𝑃 in 𝐺𝑓 do

3. Let 𝑃 be an augmenting 𝑠-𝑡-path in 𝐺𝑓;

4. 𝑓′ ≔ augment(𝑓, 𝑃);

5. update 𝑓 to be 𝑓′;

6. update the residual graph 𝐺𝑓

7. end;

