

Algorithm Theory

Chapter 6 Graph Algorithms

Part II: Basic Ford Fulkerson Analysis

Fabian Kuhn

Ford-Fulkerson Algorithm

- Improve flow using an augmenting path as long as possible:
- 1. Initially, f(e) = 0 for all edges $e \in E$, $G_f = G$
- 2. while there is an augmenting s-t-path P in G_f do
- 3. Let P be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \operatorname{augment}(f, P);$
- 5. update f to be f';
- 6. update the residual graph G_f
- 7. **end**;

Ford-Fulkerson Running Time

Theorem: If all edge *capacities* are *integers*, the Ford-Fulkerson algorithm terminates after at most *C* iterations, where

$$C = \text{"max flow value"} \le \sum_{e \text{ out of } s} c_e.$$

Proof:

- 1. At all times, for all $e \in E$, f(e) is an integer
 - Initially: f(e) = 0
 - In one iteration:
 - augmenting path *P*: all residual capacities are integers
 - bottleneck(P, f) > 0 and also bottleneck(P, f) is an integer
 - f'(e) = f(e) or $f'(e) = f(e) \pm \text{bottleneck}(P, f)$
- 2. New flow value $|f'| = |f| + \text{bottleneck}(P, f) \ge |f| + 1$

\Rightarrow #iterations $\leq C$

Algorithm Theory

Fabian Kuhn

Ford-Fulkerson Running Time

Theorem: If all edge *capacities* are *integers*, the Ford-Fulkerson algorithm can be implemented to run in O(mC) time.

m: #edges

Proof:

Show that each of the $\leq C$ iterations requires O(m) time.

- 1. Compute / update residual graph: 1^{st} iteration: O(m)Later iterations: O(n)
- 2. Find augmenting path / conclude that no augm. path exists find positive *s*-*t* path in residual graph G_f

 \Rightarrow Graph traversal: using DFS or BFS: O(m)

3. Update flow values: O(n)

s-t Cuts

Definition:

An *s*-*t* cut is a partition (A, B) of the vertex set such that $s \in A$ and $t \in B$

Cut Capacity

Definition:

The capacity c(A, B) of an *s*-*t*-cut (A, B) is defined as

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A).$

Proof:

 $|f| = f^{\text{out}}(s), \quad \left(=f^{\text{in}}(t)\right)$ $|f| = f^{\text{out}}(s) - f^{\text{in}}(s)$ = 0 $= \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v)\right)$ = 0, except for v = s $= f^{\text{out}}(A) - f^{\text{in}}(A)$

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A)$. **Lemma:** Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{in}(B) - f^{out}(B)$.

Proof:

- Either do the same argument as before, symmetrically
- Or, use that $f^{out}(A) = f^{in}(B)$ and $f^{in}(A) = f^{out}(B)$

Upper Bound on Flow Value

Lemma:

Let f be any s-t flow and (A, B) any s-t cut. Then $|f| \leq c(A, B)$.

Proof:

$$|f| = f^{\text{out}}(A) - f^{\text{in}}(A) \le c(A, B)$$
$$f^{\text{out}}(A) \le c(A, B)$$
$$f^{\text{in}}(A) \ge 0$$

Ford-Fulkerson Gives Optimal Solution

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|\boldsymbol{f}| = \boldsymbol{c}(\boldsymbol{A}^*, \boldsymbol{B}^*).$

Proof:

 Define A*: set of nodes that can be reached from s on a path with positive residual capacities in G_f:

- For $B^* = V \setminus A^*$, (A^*, B^*) is an *s*-*t* cut
 - − By definition $s \in A^*$ and $t \notin A^*$

Ford-Fulkerson Gives Optimal Solution

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|\boldsymbol{f}| = \boldsymbol{c}(\boldsymbol{A}^*, \boldsymbol{B}^*).$

Proof:

Algorithm Theory

°S

*A**

 $f^{\text{out}}(A^*) = c(A^*, B^*)$

 $f^{\rm in}(A^*)=0$

Ford-Fulkerson Gives Optimal Solution

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:

• Ford-Fulkerson algorithm gives a flow f^* and a cut (A^*, B^*)

s.t.
$$|f^*| = c(A^*, B^*)$$
.

• We saw that $|f| \le c(A, B)$ for every valid flow f and every s-t cut (A, B).

- And thus in particular also $|f| \le c(A^*, B^*)$.

Ford-Fulkerson also gives a minimum *s*-*t* cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time.

Proof:

- f maximum \Rightarrow no augmenting path
- We can therefore construct cut (A^*, B^*) as before
 - By using DFS/BFS on the positive res. cap. edges of G_f in time O(m).
- (A^*, B^*) is a cut of minimum capacity:
 - For every other *s*-*t* cut (A, B), we know that $|f| \le c(A, B)$
 - Because $|f| = c(A^*, B^*)$, we therefore have

 $c(A^*,B^*) \leq c(A,B).$

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

Proof:

 Ford-Fulkerson gives a maximum flow f* and a minimum cut (A*, B*) s.t.

 $|f^*| = c(A^*, B^*).$

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow f(e) of every edge e is an integer.

Proof:

- If all the capacities are integers, the Ford-Fulkerson algorithm gives an integer solution.
 - By induction on the steps of the algorithm, all flow values are always integers and all residual capacities of G_f are always integers.