
Algorithm Theory

Chapter 6

Graph Algorithms

Part II:
Basic Ford Fulkerson Analysis

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible: 

1. Initially, 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸, 𝐺𝑓 = 𝐺

2. while there is an augmenting 𝑠-𝑡-path 𝑃 in 𝐺𝑓 do

3. Let 𝑃 be an augmenting 𝑠-𝑡-path in 𝐺𝑓;

4. 𝑓′ ≔ augment(𝑓, 𝑃);

5. update 𝑓 to be 𝑓′;

6. update the residual graph 𝐺𝑓

7. end;



Algorithm Theory Fabian Kuhn 3

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm terminates after at most 𝐶 iterations, where

𝐶 = "max flow value" ≤ 

𝑒 out of 𝑠

𝑐𝑒 .

Proof:

1. At all times, for all 𝑒 ∈ 𝐸, 𝑓 𝑒 is an integer
• Initially: 𝑓 𝑒 = 0

• In one iteration:

• augmenting path 𝑃: all residual capacities are integers

• bottleneck 𝑃, 𝑓 > 0 and also bottleneck 𝑃, 𝑓 is an integer

• 𝑓′ 𝑒 = 𝑓 𝑒 or 𝑓′ 𝑒 = 𝑓 𝑒 ± bottleneck 𝑃, 𝑓

2. New flow value 𝑓′ = 𝑓 + bottleneck 𝑃, 𝑓 ≥ 𝑓 + 1

⟹ #iterations ≤ 𝑪



Algorithm Theory Fabian Kuhn 4

Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm can be implemented to run in 𝑂(𝑚𝐶) time.

Proof:

Show that each of the ≤ 𝐶 iterations requires 𝑂 𝑚 time.

1. Compute / update residual graph:

2. Find augmenting path / conclude that no augm. path exists

⟹ Graph traversal: using DFS or BFS: 𝑂 𝑚

3. Update flow values: 𝑂 𝑛

𝑚: #edges

1st iteration:       𝑂 𝑚

Later iterations:𝑂 𝑛

find positive 𝑠-𝑡 path in residual graph 𝐺𝑓



Algorithm Theory Fabian Kuhn 5

𝑠-𝑡 Cuts

Definition:
An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of the vertex set such that 𝑠 ∈ 𝐴
and 𝑡 ∈ 𝐵

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

15

20

15

15

15

10

5

20

20

𝑨

𝑩



Algorithm Theory Fabian Kuhn 6

Cut Capacity

Definition:
The capacity 𝑐 𝐴, 𝐵 of an 𝑠-𝑡-cut (𝐴, 𝐵) is defined as

𝒄 𝑨,𝑩 ≔ 

𝒆 𝐨𝐮𝐭 𝐨𝐟 𝑨

𝒄𝒆 .

𝑠

𝑥

𝑢

𝑦

𝑣

𝑤

𝑞

𝑧

𝑡

15
20

20

15

10

10

20

𝟏𝟓

20

15

15

15

10

𝟓

𝟐𝟎

𝟐𝟎

𝑨

𝑩



Algorithm Theory Fabian Kuhn 7

Cuts and Flow Value

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 .

Proof:

𝑓 = 𝑓out 𝑠 , = 𝑓in 𝑡

𝑓 = 𝑓out 𝑠 − 𝑓in 𝑠

= 0

= 

𝑣∈𝐴

𝑓out 𝑣 − 𝑓in 𝑣

= 0, except for 𝑣 = 𝑠

= 𝑓out 𝐴 − 𝑓in 𝐴

𝐴 𝐵
𝑠 𝑡

𝑓out 𝐴

𝑓in 𝐴



Algorithm Theory Fabian Kuhn 8

Cuts and Flow Value

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 .

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐢𝐧 𝑩 − 𝒇𝐨𝐮𝐭 𝑩 .

Proof:

• Either do the same argument as before, symmetrically

• Or, use that 𝑓out 𝐴 = 𝑓in(𝐵) and 𝑓in 𝐴 = 𝑓out(𝐵)

𝐴 𝐵
𝑠 𝑡

𝑓out 𝐴 = 𝑓in(𝐵)

𝑓in 𝐴 = 𝑓out 𝐵



Algorithm Theory Fabian Kuhn 9

Upper Bound on Flow Value

Lemma:

Let 𝑓 be any 𝑠-𝑡 flow and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then 𝒇 ≤ 𝒄(𝑨,𝑩).

Proof:

𝑓 = 𝑓out 𝐴 − 𝑓in 𝐴

𝑓out 𝐴 ≤ 𝑐 𝐴, 𝐵

𝑓in 𝐴 ≥ 0

≤ 𝑐 𝐴, 𝐵

𝐴 𝐵
𝑠 𝑡

= 𝑐(𝐴, 𝐵)



Algorithm Theory Fabian Kuhn 10

Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:

• Define 𝑨∗: set of nodes that can be reached from 𝑠 on a path 
with positive residual capacities in 𝐺𝑓:

• For 𝐵∗ = 𝑉 ∖ 𝐴∗, (𝐴∗, 𝐵∗) is an 𝑠-𝑡 cut
– By definition 𝑠 ∈ 𝐴∗ and 𝑡 ∉ 𝐴∗

𝐴∗
𝑠 +

+

+

+

+

+ +

+ +

+ +

+

+

+

+

+

+

+

𝐵∗ 𝑡

Residual capacity = 0

0

0

0

00



Algorithm Theory Fabian Kuhn 11

Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:

𝐴∗ 𝐵∗

Edge 𝑒 from 
𝐴∗ to 𝐵∗ in 𝐺

Forward edge
𝑒 in 𝐺𝑓

Edge 𝑒 from 
𝐵∗ to 𝐴∗ in 𝐺

Backward edge 
𝑒′ in 𝐺𝑓

𝑐𝑒 = 0

𝑐𝑒′ = 0

𝑓 𝑒 = 𝑐𝑒

𝑓 𝑒 = 0

𝐴∗ 𝐵∗𝑠 𝑡

𝑓out 𝐴∗ = 𝑐(𝐴∗, 𝐵∗)

𝑓in 𝐴∗ = 0



Algorithm Theory Fabian Kuhn 12

Ford-Fulkerson Gives Optimal Solution

Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof:

• Ford-Fulkerson algorithm gives a flow 𝑓∗ and a cut 𝐴∗, 𝐵∗

s. t. 𝑓∗ = 𝑐 𝐴∗, 𝐵∗ .

• We saw that 𝑓 ≤ 𝑐 𝐴, 𝐵 for every valid flow 𝑓
and every 𝑠-𝑡 cut 𝐴, 𝐵 .
– And thus in particular also 𝑓 ≤ 𝑐 𝐴∗, 𝐵∗ .



Algorithm Theory Fabian Kuhn 13

Min-Cut Algorithm

Ford-Fulkerson also gives a minimum 𝑠-𝑡 cut algorithm:

Theorem: Given a flow 𝑓 of maximum value, we can compute an 
𝑠-𝑡 cut of minimum capacity in 𝑂(𝑚) time.

Proof:

• 𝑓 maximum ⟹ no augmenting path

• We can therefore construct cut 𝐴∗, 𝐵∗ as before

– By using DFS/BFS on the positive res. cap. edges of 𝐺𝑓 in time 𝑂 𝑚 .

• 𝐴∗, 𝐵∗ is a cut of minimum capacity:
– For every other 𝑠-𝑡 cut 𝐴, 𝐵 , we know that 𝑓 ≤ 𝑐 𝐴, 𝐵

– Because 𝑓 = 𝑐(𝐴∗, 𝐵∗), we therefore have

𝑐 𝐴∗, 𝐵∗ ≤ 𝑐 𝐴, 𝐵 .



Algorithm Theory Fabian Kuhn 14

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an 𝑠-𝑡 flow is 
equal to the minimum capacity of an 𝑠-𝑡 cut.

Proof:

• Ford-Fulkerson gives a maximum flow 𝑓∗

and a minimum cut (𝐴∗, 𝐵∗) s.t.

𝑓∗ = 𝑐 𝐴∗, 𝐵∗ .



Algorithm Theory Fabian Kuhn 15

Integer Capacities

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a 
maximum flow 𝑓 for which the flow 𝑓 𝑒 of every edge 𝑒 is an 
integer.

Proof:

• If all the capacities are integers, the Ford-Fulkerson algorithm 
gives an integer solution.
– By induction on the steps of the algorithm, all flow values are always 

integers and all residual capacities of 𝐺𝑓 are always integers.


