

Algorithm Theory

Chapter 6 Graph Algorithms

Part IV: Simple Maximum Flow Applications

Fabian Kuhn

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
 - related network flow problems
 - computation of small cuts
 - computation of matchings
 - computing disjoint paths
 - scheduling problems
 - assignment problems with some side constraints

- ...

Undirected Edges:

• Undirected edge {*u*, *v*}: add edges (*u*, *v*) and (*v*, *u*) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_v of node $v \notin \{s, t\}$:

$$f^{\rm in}(v) = f^{\rm out}(v) \le c_v$$

• Replace node v by edge $e_v = \{v_{in}, v_{out}\}$:

Minimum *s*-*t* Cut

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-*t* cut: Partition (A, B) of V such that $s \in A, t \in B$

Size of cut (A, B): number of edges crossing the cut

Objective: find *s*-*t* cut of minimum size

- Create flow network:
 - make edges directed:
 edge capacities = 1
- Size of cut in G = capacity of cut in flow network

Edge Connectivity

FREIBURG

Definition: A graph G = (V, E) is k-edge connected for an integer $k \ge 1$ if the graph $G_X = (V, E \setminus X)$ is connected for every edge set

 $X \subseteq E, |X| \leq k - 1.$ Need to remove $\geq k$

Edge Connectivity $\lambda(G)$

max k such that G is k-edge connected.

Goal: Compute *edge connectivity* $\lambda(G)$ of *G* (and edge set *X* of size $\lambda(G)$ that divides *G* into ≥ 2 parts)

• minimum set X is a minimum s-t cut for some $s, t \in V$

B

 $\geq k \Rightarrow \lambda(G)$

- Actually for all s, t in different components of $G_X = (V, E \setminus X)$
- Fix *s*, find min *s*-*t* cut for all $t \neq s \Rightarrow$ running time $O(mn^2)$

A

Minimum *s*-*t* Vertex-Cut

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-*t* vertex cut: Set $X \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \setminus X]$ induced by $V \setminus X$

Size of vertex cut: |X|

Objective: find *s*-*t* vertex-cut of minimum size

- Replace undirected edges {*u*, *v*} by (*u*, *v*) and (*v*, *u*)
- Compute max *s*-*t* flow for edge capacities ∞ and node capacities

$$c_v = 1$$
 for $v \neq s, t$

- Replace each node v by v_{in} and v_{out}
- Min edge cut corresponds to min vertex cut in G

Algorithm Theory

Fabian Kuhn

Vertex Connectivity

Definition: A graph G = (V, E) is k-vertex connected for an integer $k \ge 1$ if the sub-graph $G[V \setminus X]$ induced by $V \setminus X$ is connected for every edge set

Goal: Compute vertex connectivity $\kappa(G)$ of G(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

• Compute minimum s-t vertex cut for all s and all $t \neq s$ such that t is not a neighbor of $s \implies$ running time $O(m \cdot n^3)$

Algorithm Theory

Fabian Kuhn

Edge-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many edge-disjoint *s*-*t* paths as possible

Solution:

• Find max *s*-*t* flow in *G* with edge capacities $c_e = 1$ for all $e \in E$

Flow f induces |f| edge-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Vertex-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint *s*-*t* paths as possible

Solution:

• Find max *s*-*t* flow in *G* with node capacities $c_v = 1$ for all $v \in V$

Flow f induces |f| vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Theorem: (edge version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with non-adjacent nodes $s, t \in V$, the size of the minimum s-t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t.

 Both versions can be seen as a special case of the max flow min cut theorem