
Algorithm Theory

Chapter 6

Graph Algorithms

Part IV:
Simple Maximum Flow Applications

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Maximum Flow Applications

• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

• Examples:
– related network flow problems

– computation of small cuts

– computation of matchings

– computing disjoint paths

– scheduling problems

– assignment problems with some side constraints

– …

Algorithm Theory Fabian Kuhn 3

Undirected Edges and Vertex Capacities

Undirected Edges:

• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣 and (𝑣, 𝑢) to network

Vertex Capacities:

• Not only edges, but also (or only) nodes have capacities

• Capacity 𝑐𝑣 of node 𝑣 ∉ {𝑠, 𝑡}:

𝑓in 𝑣 = 𝑓out 𝑣 ≤ 𝑐𝑣

• Replace node 𝑣 by edge 𝑒𝑣 = {𝑣in, 𝑣out}:

𝑣 𝑣in 𝑣out
𝒄𝒗

Algorithm Theory Fabian Kuhn 4

Minimum 𝑠-𝑡 Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵

Size of cut (𝑨,𝑩): number of edges crossing the cut

Objective: find 𝑠-𝑡 cut of minimum size

• Create flow network:
– make edges directed:

– edge capacities = 1

• Size of cut in 𝐺 = capacity of cut in flow network

𝑨 𝑩⋮

size of cut = #edges crossing the cut

𝑠 𝑡

Algorithm Theory Fabian Kuhn 5

Edge Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-edge connected for an integer
𝑘 ≥ 1 if the graph 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1.

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺
(and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts)

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉
– Actually for all 𝑠, 𝑡 in different components of 𝐺𝑋 = (𝑉, 𝐸 ∖ 𝑋)

• Fix 𝑠, find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠⟹ running time 𝑂 𝑚𝑛2

𝑨 𝑩⋮

≥ 𝑘

Need to remove ≥ 𝑘
edges to disconnect 𝐺

≔

𝜆 𝐺

Edge Connectivity 𝝀 𝑮

max 𝑘 such that 𝐺 is
𝑘-edge connected.

Algorithm Theory Fabian Kuhn 6

Minimum 𝑠-𝑡 Vertex-Cut

Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋

Size of vertex cut: |𝑋|

Objective: find 𝑠-𝑡 vertex-cut of minimum size

• Replace undirected edges {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢)

• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities

𝑐𝑣 = 1 for 𝑣 ≠ 𝑠, 𝑡

• Replace each node 𝑣 by 𝑣in and 𝑣out

• Min edge cut corresponds to min vertex cut in 𝐺

𝑿 𝑡𝑠

∞
∞
∞

∞

∞
1

Algorithm Theory Fabian Kuhn 7

Vertex Connectivity

Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-vertex connected for an integer
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for
every edge set

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1.

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺
(and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts)

• Compute minimum 𝑠-𝑡 vertex cut for all 𝑠 and all 𝑡 ≠ 𝑠 such that 𝑡
is not a neighbor of 𝑠 ⟹ running time 𝑂 𝑚 ⋅ 𝑛3

𝑿

Need to remove ≥ 𝑘
edges to disconnect 𝐺

|𝑋| ≥ 𝑘

≔

𝜅 𝐺 Vertex Connectivity 𝜿 𝑮

max 𝑘 such that 𝐺 is
𝑘-vertex connected.

Algorithm Theory Fabian Kuhn 8

Edge-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible

Solution:

• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐𝑒 = 1 for all 𝑒 ∈ 𝐸

Flow 𝑓 induces 𝑓 edge-disjoint paths:

• Integral capacities can compute integral max flow 𝑓

• Get 𝑓 edge-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)

𝑠 𝑡

Algorithm Theory Fabian Kuhn 9

Vertex-Disjoint Paths

Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible

Solution:

• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐𝑣 = 1 for all 𝑣 ∈ 𝑉

Flow 𝑓 induces 𝑓 vertex-disjoint paths:

• Integral capacities can compute integral max flow 𝑓

• Get 𝑓 vertex-disjoint paths by greedily picking them

• Correctness follows from flow conservation 𝑓in 𝑣 = 𝑓out(𝑣)

𝑠 𝑡

Algorithm Theory Fabian Kuhn 10

Menger’s Theorem

Theorem: (edge version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise
edge-disjoint paths from 𝑠 to 𝑡.

Theorem: (node version)
For every graph 𝐺 = (𝑉, 𝐸) with non-adjacent nodes 𝑠, 𝑡 ∈ 𝑉, the
size of the minimum 𝑠-𝑡 vertex cut equals the maximum number of
pairwise internally vertex-disjoint paths from 𝑠 to 𝑡.

• Both versions can be seen as a special case of the max flow min
cut theorem

