IIF

 Algorithm Theory

 Algorithm Theory}

Chapter 6 Graph Algorithms

Part IV:

Simple Maximum Flow Applications

Fabian Kuhn

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique
- Examples:
- related network flow problems
- computation of small cuts
- computation of matchings
- computing disjoint paths
- scheduling problems
- assignment problems with some side constraints
- ...

Undirected Edges and Vertex Capacities

Undirected Edges:

- Undirected edge $\{u, v\}$: add edges (u, v) and (v, u) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_{v} of node $v \notin\{s, t\}$:

$$
f^{\mathrm{in}}(v)=f^{\mathrm{out}}(v) \leq c_{v}
$$

- Replace node v by edge $e_{v}=\left\{v_{\text {in }}, v_{\text {out }}\right\}$:

Minimum s - t Cut

Given: undirected graph $G=(V, E)$, nodes $s, t \in V$
\boldsymbol{s} - \boldsymbol{t} cut: Partition (A, B) of V such that $s \in A, t \in B$
Size of cut $(\boldsymbol{A}, \boldsymbol{B})$: number of edges crossing the cut

Objective: find $s-t$ cut of minimum size

- Create flow network:
- make edges directed:

- edge capacities $=1$
- Size of cut in $G=$ capacity of cut in flow network

Edge Connectivity

Definition: A graph $G=(V, E)$ is k-edge connected for an integer $k \geq 1$ if the graph $G_{X}=(V, E \backslash X)$ is connected for every edge set

$$
X \subseteq E,|X| \leq k-1
$$

Need to remove $\geq k$ edges to disconnect G

Edge Connectivity $\boldsymbol{\lambda}(\boldsymbol{G})$
max k such that G is k-edge connected.

Goal: Compute edge connectivity $\lambda(G)$ of G (and edge set X of size $\lambda(G)$ that divides G into ≥ 2 parts)

- minimum set X is a minimum $s-t$ cut for some $s, t \in V$
- Actually for all s, t in different components of $G_{X}=(V, E \backslash X)$
- Fix s, find min s - t cut for all $t \neq s \Longrightarrow$ running time $O\left(m n^{2}\right)$

Minimum s-t Vertex-Cut

Given: undirected graph $G=(V, E)$, nodes $s, t \in V$
\boldsymbol{s} - t vertex cut: Set $X \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \backslash X]$ induced by $V \backslash X$

Size of vertex cut: $|X|$

Objective: find s - t vertex-cut of minimum size

- Replace undirected edges $\{u, v\}$ by (u, v) and (v, u)
- Compute max s - t flow for edge capacities ∞ and node capacities

$$
c_{v}=1 \text { for } v \neq s, t
$$

- Replace each node v by $v_{\text {in }}$ and $v_{\text {out }}$
- Min edge cut corresponds to min vertex cut in G

Vertex Connectivity

Definition: A graph $G=(V, E)$ is k-vertex connected for an integer $k \geq 1$ if the sub-graph $G[V \backslash X]$ induced by $V \backslash X$ is connected for every edge set

Vertex Connectivity $\boldsymbol{\kappa}(\boldsymbol{G})$
$\max k$ such that G is k-vertex connected.

Goal: Compute vertex connectivity $\kappa(G)$ of G
(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

- Compute minimum s - t vertex cut for all s and all $t \neq s$ such that t is not a neighbor of $s \Rightarrow$ running time $O\left(m \cdot n^{3}\right)$

Edge-Disjoint Paths

Given: Graph $G=(V, E)$ with nodes $s, t \in V$
Goal: Find as many edge-disjoint s - t paths as possible

Solution:

- Find max s-t flow in G with edge capacities $c_{e}=1$ for all $e \in E$

Flow f induces $|f|$ edge-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get $|f|$ edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{\text {in }}(v)=f^{\text {out }}(v)$

Vertex-Disjoint Paths

Given: Graph $G=(V, E)$ with nodes $s, t \in V$
Goal: Find as many internally vertex-disjoint $s-t$ paths as possible

Solution:

- Find max s - t flow in G with node capacities $c_{v}=1$ for all $v \in V$

Flow f induces $|f|$ vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get $|f|$ vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{\text {in }}(v)=f^{\text {out }}(v)$

Menger's Theorem

Theorem: (edge version)

For every graph $G=(V, E)$ with nodes $s, t \in V$, the size of the minimum s - t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)
For every graph $G=(V, E)$ with non-adjacent nodes $s, t \in V$, the size of the minimum s - t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t.

- Both versions can be seen as a special case of the max flow min cut theorem

