

Algorithm Theory

Chapter 6 Graph Algorithms

Part IX:

Maximum Matching in General Graphs

Fabian Kuhn

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 - A matching that cannot be extended...
- Compare the size of a maximal and a maximum matching

 Each maximal matching edge is adjacent to ≤ 2 maximum matching edges

Algorithm Theory

Maximal vs. Maximum Matching

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \ge \frac{|M^*|}{2}$$

л // * |

Proof:

• For each edge $e \in M$, let $\mu(e) \subseteq M^*$ be the adjacent edges in M^*

• Every edge in M^* is adjacent to some edge of M:

$$|M^*| = \left| \bigcup_{e \in M} \mu(e) \right| \le \sum_{e \in M} |\mu(e)| \le 2|M|.$$

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

augmenting path

• Matching *M* can be improved using an augmenting path by switching the role of each edge along the path

Algorithm Theory

Fabian Kuhn

Existence of Augmenting Paths

Theorem: A matching M of G = (V, E) is maximum if and only if there is no augmenting path.

Proof:

• Consider non-max. matching M and max. matching M^* and define

 $F \coloneqq M \setminus M^*$, $F^* \coloneqq M^* \setminus M$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

Finding Augmenting Paths

Blossoms

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory

Fabian Kuhn

Contracting Blossoms

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'.

• Obtain matchings M_1 / M_1' on G / G' by toggling matching on stem

- $|M| = |M_1|$ and $|M'| = |M'_1|$:
- On G, there is an augm. path w.r.t. M iff there is an augm. path w.r.t. M₁
- On G', there is an augm. path w.r.t. M' iff there is an augm. path w.r.t. M₁'
- We can w.l.o.g. assume that the root of the stem is a free node.

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'.

If the root of the blossom is free, any augmenting path w.r.t. M₁ that contains nodes of the blossom can be turned into an augmenting path that ends at the root of the blossom and consists of a part inside the blossom and a part outside it.

UNI

Algorithm Sketch:

- 1. Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - If v is explored and in the same tree:
 at odd distance from root → ignore and move on
 at even distance from root → blossom found
 - If v is explored and in another tree
 at odd distance from root → ignore and move on
 at even distance from root → augmenting path found

Finding a Blossom: Restart search on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.

- DFS to find augmenting path or blossom: O(m)
- Needs to be repeated each time, when a blossom is found
 - Contraction of blossom reduces number of nodes by at least 2
 - Number of repetitions is $\leq n/2$
- In time O(mn), we can find an augmenting path, if there is one and improve a given non-maximum matching
- Maximum matching has size $\leq n/2$

UN FREIBURG

We have seen:

- O(mn) time alg. to compute a max. matching in *bipartite graphs*
- $O(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- The problem can also be solved optimally in polynomial time, both in bipartite graphs and in general graphs
 - Algorithms use maximum matching in unweighted graphs as subroutine