IIF

 Algorithm Theory

 Algorithm Theory}

Chapter 6 Graph Algorithms

Part IX:

Maximum Matching in General Graphs

Fabian Kuhn

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
- A matching that cannot be extended...
- Compare the size of a maximal and a maximum matching

- Each maximal matching edge is adjacent to ≤ 2 maximum matching edges

Maximal vs. Maximum Matching

Theorem: For any maximal matching M and any maximum matching M^{*}, it holds that

$$
|M| \geq \frac{\left|M^{*}\right|}{2}
$$

Proof:

- For each edge $e \in M$, let $\mu(e) \subseteq M^{*}$ be the adjacent edges in M^{*}

$$
\forall e \in M:|\mu(e)| \leq 2
$$

- Every edge in M^{*} is adjacent to some edge of M :

$$
\left|M^{*}\right|=\left|\bigcup_{e \in M} \mu(e)\right| \leq \sum_{e \in M}|\mu(e)| \leq 2|M| .
$$

Augmenting Paths

Consider a matching M of a graph $G=(V, E)$:

- A node $v \in V$ is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \backslash M$ and edges in M alternatingly.
free nodes

augmenting path

- Matching M can be improved using an augmenting path by switching the role of each edge along the path

Existence of Augmenting Paths

Theorem: A matching M of $G=(V, E)$ is maximum if and only if there is no augmenting path.

Proof:

- Consider non-max. matching M and max. matching M^{*} and define

$$
F:=M \backslash M^{*}, \quad F^{*}:=M^{*} \backslash M
$$

- Note that $F \cap F^{*}=\emptyset$ and $|F|<\left|F^{*}\right|$
- Each node $v \in V$ is incident to at most one edge in both F and F^{*} - $F \cup F^{*}$ induces even cycles and paths

augmenting path for M
augmenting path for M^{*} (cannot exist)

Finding Augmenting Paths

Blossoms

- If we find an odd cycle...

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G^{\prime} has an augmenting path w.r.t. matching M^{\prime}.

Also: The matching M can be computed efficiently from M^{\prime}.

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G^{\prime} has an augmenting path w.r.t. matching M^{\prime}.

- Obtain matchings $M_{1} / M_{1}{ }^{\prime}$ on G / G^{\prime} by toggling matching on stem

$$
|M|=\left|M_{1}\right| \text { and }\left|M^{\prime}\right|=\left|M_{1}^{\prime}\right|:
$$

- On G, there is an augm. path w.r.t. M iff there is an augm. path w.r.t. M_{1}
- On G^{\prime}, there is an augm. path w.r.t. M^{\prime} iff there is an augm. path w.r.t. M_{1}^{\prime}
- We can w.l.o.g. assume that the root of the stem is a free node.

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G^{\prime} has an augmenting path w.r.t. matching M^{\prime}.

- If the root of the blossom is free, any augmenting path w.r.t. M_{1} that contains nodes of the blossom can be turned into an augmenting path that ends at the root of the blossom and consists of a part inside the blossom and a part outside it.

Edmond's Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node
2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
3. If v is an unexplored node, v is matched to some neighbor w : add w to the tree (w is now explored)
4. If v is explored and in the same tree:
at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found
5. If v is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow augmenting path found

Running Time

Finding a Blossom: Restart search on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O\left(m n^{2}\right)$.

- DFS to find augmenting path or blossom: $O(m)$
- Needs to be repeated each time, when a blossom is found
- Contraction of blossom reduces number of nodes by at least 2
- Number of repetitions is $\leq n / 2$
- In time $O(\mathrm{mn})$, we can find an augmenting path, if there is one and improve a given non-maximum matching
- Maximum matching has size $\leq n / 2$

Matching Algorithms

We have seen:

- $\boldsymbol{O}(\boldsymbol{m n})$ time alg. to compute a max. matching in bipartite graphs
- $\mathbf{O}\left(\boldsymbol{m} n^{2}\right)$ time alg. to compute a max. matching in general graphs

Better algorithms:

- Best known running time (bipartite and general gr.): $\boldsymbol{O}(\boldsymbol{m} \sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of maximum total weight
- The problem can also be solved optimally in polynomial time, both in bipartite graphs and in general graphs
- Algorithms use maximum matching in unweighted graphs as subroutine

