
Algorithm Theory

Chapter 6

Graph Algorithms

Part IX:
Maximum Matching in General Graphs

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

What About General Graphs

• Can we efficiently compute a maximum matching if 𝐺 is not
bipartite?

• How good is a maximal matching?
– A matching that cannot be extended…

• Compare the size of a maximal and a maximum matching

• Each maximal matching edge is adjacent to
≤ 2 maximum matching edges

Algorithm Theory Fabian Kuhn 3

Maximal vs. Maximum Matching

Theorem: For any maximal matching 𝑀 and any
maximum matching 𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:

• For each edge 𝑒 ∈ 𝑀, let 𝜇 𝑒 ⊆ 𝑀∗ be the adjacent edges in 𝑀∗

• Every edge in 𝑀∗ is adjacent to some edge of 𝑀:

𝑀∗ = ራ

𝑒∈𝑀

𝜇 𝑒 ≤

𝑒∈𝑀

𝜇 𝑒 ≤ 2 𝑀 .

𝒆

𝝁(𝒆)

∀𝑒 ∈ 𝑀 ∶ 𝜇 𝑒 ≤ 2

Algorithm Theory Fabian Kuhn 4

Augmenting Paths

Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):

• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by
switching the role of each edge along the path

free nodes

augmenting path

Algorithm Theory Fabian Kuhn 5

Existence of Augmenting Paths

Theorem: A matching 𝑀 of 𝐺 = (𝑉, 𝐸) is maximum if and only if
there is no augmenting path.

Proof:

• Consider non-max. matching 𝑀 and max. matching 𝑀∗ and define

𝐹 ≔ 𝑀 ∖𝑀∗, 𝐹∗ ≔ 𝑀∗ ∖ 𝑀

• Note that 𝐹 ∩ 𝐹∗ = ∅ and 𝐹 < |𝐹∗|

• Each node 𝑣 ∈ 𝑉 is incident to at most one edge in both 𝐹 and 𝐹∗

• 𝐹 ∪ 𝐹∗ induces even cycles and paths

augmenting path for 𝑀

augmenting path for 𝑀∗

(cannot exist)

Algorithm Theory Fabian Kuhn 6

Finding Augmenting Paths

free nodes

augmenting path

odd cycle

Algorithm Theory Fabian Kuhn 7

Blossoms

• If we find an odd cycle…

free node 𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

blossom

𝑏

𝑐

𝑑

𝑎

𝑒
stem

𝑓

𝑢

𝑣′𝑏

𝑐

𝑑

𝑎

𝑒

contracted blossom

contract
blossom

Graph 𝑮

Graph 𝑮′

root

Matching 𝑴

𝒆 𝒆′

Matching 𝑴′ = 𝑴 ∖ 𝒆, 𝒆′

is a matching of 𝑮′.

Algorithm Theory Fabian Kuhn 8

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′ has
an augmenting path w.r.t. matching 𝑀′.

Also: The matching 𝑀 can be computed efficiently from 𝑀′.

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

𝑎

𝑏

𝑓′ 𝑓

𝑢

𝑎

𝑏

𝑓′

𝑣′

Algorithm Theory Fabian Kuhn 9

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′ has
an augmenting path w.r.t. matching 𝑀′.

• Obtain matchings 𝑀1 / 𝑀1′ on 𝐺 / 𝐺′ by toggling matching on stem

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

toggle matching
on stem

𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

𝑓

𝑢

𝑣

toggle matching
on stem

𝑓

𝑢

𝑣

𝑴 = |𝑴𝟏| and 𝑴′ = |𝑴𝟏
′ |:

• On 𝐺, there is an augm. path w.r.t. 𝑀
iff there is an augm. path w.r.t. 𝑀1

• On 𝐺′, there is an augm. path w.r.t. 𝑀′
iff there is an augm. path w.r.t. 𝑀1

′

• We can w.l.o.g. assume that the
root of the stem is a free node.

Algorithm Theory Fabian Kuhn 10

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′ has
an augmenting path w.r.t. matching 𝑀′.

• If the root of the blossom is free, any augmenting path w.r.t. 𝑀1

that contains nodes of the blossom can be turned into an
augmenting path that ends at the root of the blossom and consists
of a part inside the blossom and a part outside it.

Contracting Blossoms

𝑣

𝑤

𝑥

𝑦

𝑧

𝑎

𝑏

𝑓′

𝑣′

𝑎

𝑏

𝑓′

Algorithm Theory Fabian Kuhn 11

Edmond’s Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node

2. Starting from an explored node 𝑢 at even distance from a free
node 𝑓 in the tree of 𝑓, explore some unexplored edge {𝑢, 𝑣}:

1. If 𝑣 is an unexplored node, 𝑣 is matched to some neighbor 𝑤:
add 𝑤 to the tree (𝑤 is now explored)

2. If 𝑣 is explored and in the same tree:
at odd distance from root ignore and move on
at even distance from root blossom found

3. If 𝑣 is explored and in another tree
at odd distance from root ignore and move on
at even distance from root augmenting path found

Algorithm Theory Fabian Kuhn 12

Running Time

Finding a Blossom: Restart search on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 𝑂 𝑚𝑛2 .

• DFS to find augmenting path or blossom: 𝑂 𝑚

• Needs to be repeated each time, when a blossom is found
– Contraction of blossom reduces number of nodes by at least 2

– Number of repetitions is ≤ Τ𝑛 2

• In time 𝑂 𝑚𝑛 , we can find an augmenting path, if there is
one and improve a given non-maximum matching

• Maximum matching has size ≤ Τ𝑛 2

Algorithm Theory Fabian Kuhn 13

Matching Algorithms

We have seen:

• 𝑶 𝒎𝒏 time alg. to compute a max. matching in bipartite graphs

• 𝑶 𝒎𝒏𝟐 time alg. to compute a max. matching in general graphs

Better algorithms:

• Best known running time (bipartite and general gr.): 𝑶 𝒎 𝒏

Weighted matching:

• Edges have weight, find a matching of maximum total weight

• The problem can also be solved optimally in polynomial time,
both in bipartite graphs and in general graphs
– Algorithms use maximum matching in unweighted graphs as subroutine

