# IIF <br> <br> Algorithm Theory 

 <br> <br> Algorithm Theory}

# Chapter 6 <br> Graph Algorithms 

Part V:
Baseball Elimination

Fabian Kuhn

## Baseball Elimination

| Team | Wins | Losses | To Play | Against $=r_{i j}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w_{i}$ | $\ell_{i}$ | $r_{i}$ | NY | Balt. | T. Bay | Tor. | Bost. |
| New York | 81 | 69 | 12 | - | 2 | 5 | 2 | 3 |
| Baltimore | 79 | 77 | 6 | 2 | - | 2 | 1 | 1 |
| Tampa Bay | 79 | 74 | 9 | 5 | 2 | - | 1 | 1 |
| Toronto | 76 | 80 | 6 | 2 | 1 | 1 | - | 2 |
| Boston | 71 | 84 | 7 | 3 | 1 | 1 | 2 | - |

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):
- Boston can get at most 78 wins, New York already has 81 wins
- If for some $i, j: w_{i}+r_{i}<w_{j} \rightarrow$ team $i$ is eliminated
- Sufficient condition, but not a necessary one!


## Baseball Elimination

| Team | Wins | Losses | To Play | Against $=r_{i j}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w_{i}$ | $\ell_{i}$ | $r_{i}$ | NY | Balt. | T. Bay | Tor. | Bost. |  |
| New York | 81 | 69 | 12 | - | 2 | 5 | 2 | 3 |  |
| Baltimore | 79 | 77 | 6 | 2 | - | 2 | 1 | 1 |  |
| Tampa Bay | 79 | 74 | 9 | 5 | 2 | - | 1 | 1 |  |
| Toronto | 76 | 80 | 6 | 2 | 1 | 1 | - | 2 |  |
| Boston | 71 | 84 | 7 | 3 | 1 | 1 | 2 | - |  |

- Can Toronto still finish first?
- Toronto can get $82>81$ wins, but:

NY and Tampa have to play 5 more times against each other
$\rightarrow$ if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?


## Max Flow Formulation

- Can team 3 finish with most wins?

- Team 3 can finish first iff all source-game edges are saturated


## Reason for Elimination

AL East: Aug 30, 1996

| Team | Wins | Losses | To Play | Against $=r_{i j}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w_{i}$ | $\ell_{i}$ | $r_{i}$ | NY | Balt. | Bost. | Tor. | Detr. |
| New York | 75 | 59 | 28 | - | 3 | 8 | 7 | 3 |
| Baltimore | 71 | 63 | 28 | 3 | - | 2 | 7 | 4 |
| Boston | 69 | 66 | 27 | 8 | 2 | - | 0 | 0 |
| Toronto | 63 | 72 | 27 | 7 | 7 | 0 | - | 0 |
| Detroit | 49 | 86 | 27 | 3 | 4 | 0 | 0 | - |

- Detroit could finish with $49+27=76$ wins
- Consider $R=\{\mathrm{NY}, \mathrm{Bal}, \mathrm{Bos}, \mathrm{Tor}\}$
- Have together already won $w(R)=278$ games
- Must together win at least $r(R)=27$ more games
- On average, teams in $R$ win $\frac{278+27}{4}=76.25$ games


## Reason for Elimination

Team 3 eliminated $\Leftrightarrow \min$ cut $(A, V \backslash A)$ of cap. < "all blue edges"

| $A$ contains all game nodes |
| :--- |
| for teams in $R$ |

$A$ contains team nodes $R$
with $R \neq \varnothing$


## Reason for Elimination

Team 3 eliminated $\Leftrightarrow \min$ cut $(A, V \backslash A)$ of cap. < "all blue edges"

A contains all game nodes for teams in $R$
$A$ contains team nodes $R$ with $R \neq \emptyset$


## Reason for Elimination

Certificate of elimination:

$$
R \subseteq X, \quad w(R):=\underbrace{\sum_{i \in R} w_{i},}_{\begin{array}{c}
\text { \#wins of } \\
\text { nodes in } R
\end{array}} \quad r(R):=\underbrace{\sum_{i, j \in R} r_{i, j}}_{\begin{array}{c}
\text { \#remaining games } \\
\text { among nodes in } R
\end{array}}
$$

- Team $x \in X$ is eliminated by $R \subseteq X \backslash\{x\}$ if

$$
\frac{w(R)+r(R)}{|R|}>w_{x}+r_{x} .
$$

- If team $x \in X$ is eliminated, there exists $R \subseteq X \backslash\{x\}$ such that team $x$ is eliminated by $R$.
$-R$ can be constructed by looking at a minimum cut

