

Algorithm Theory

Chapter 6 Graph Algorithms

Part V: Baseball Elimination

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):
 - Boston can get at most 78 wins, New York already has 81 wins
- If for some $i, j: w_i + r_i < w_j \rightarrow$ team i is eliminated
- Sufficient condition, but not a necessary one!

Algorithm Theory

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Can Toronto still finish first?
- Toronto can get 82 > 81 wins, but: NY and Tampa have to play 5 more times against each other
 → if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins
- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?

Max Flow Formulation

• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

Reason for Elimination

AL East: Aug 30, 1996

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	l _i	r _i	NY	Balt.	Bost.	Tor.	Detr.
New York	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	0
Detroit	49	86	27	3	4	0	0	-

- Detroit could finish with 49 + 27 = 76 wins
- Consider $R = \{NY, Bal, Bos, Tor\}$
 - Have together already won w(R) = 278 games
 - Must together win at least r(R) = 27 more games
- On average, teams in R win $\frac{278+27}{4} = 76.25$ games

Algorithm Theory

Reason for Elimination

Team 3 eliminated \Leftrightarrow min cut $(A, V \setminus A)$ of cap. < "all blue edges"

Reason for Elimination

Team 3 eliminated \Leftrightarrow min cut $(A, V \setminus A)$ of cap. < "all blue edges"

Certificate of elimination:

• Team $x \in X$ is eliminated by $R \subseteq X \setminus \{x\}$ if

$$\frac{w(R)+r(R)}{|R|} > w_{\chi}+r_{\chi}.$$

- If team x ∈ X is eliminated, there exists R ⊆ X \ {x} such that team x is eliminated by R.
 - *R* can be constructed by looking at a minimum cut