
Algorithm Theory

Chapter 6

Graph Algorithms

Part VI:
Circulation

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Circulations with Demands

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

• The circulation problem is a feasibility rather than a maximization
problem

Algorithm Theory Fabian Kuhn 3

Circulations with Demands: Formally

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 ≥ 0 for all 𝑒 ∈ 𝐸

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.

Algorithm Theory Fabian Kuhn 4

Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2

Algorithm Theory Fabian Kuhn 5

Condition on Demands

Claim: If there exists a feasible circulation with demands 𝑑𝑣 for
𝑣 ∈ 𝑉, then

𝑣∈𝑉

𝑑𝑣 = 0.

Proof:

• σ𝑣 𝑑𝑣 = σ𝑣 𝑓in 𝑣 − 𝑓out 𝑣

• 𝑓(𝑒) of each edge 𝑒 appears twice in the above sum with
different signs overall sum is 0

Total supply = total demand:

Define 𝑫 ≔

𝒗:𝒅𝒗<𝟎

−𝒅𝒗=

𝒗:𝒅𝒗>𝟎

𝒅𝒗

Algorithm Theory Fabian Kuhn 6

Reduction to Maximum Flow

• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network

• valid circulations ⇔ valid 𝑠∗-𝑡∗ flow that saturates all red edges.

𝑺 𝑻
-3

-1

-6
3

2

1

4

0 0

0

0

0

0

𝒔∗ 𝒕∗
𝟑
𝟏

𝟔

𝟏

𝟒

𝟐
𝟑

𝑠∗ supplies
sources

with flow

𝑡∗ siphons
flow out
of sinks

Algorithm Theory Fabian Kuhn 7

Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2

𝒔∗

𝒕∗

3

3

2

4

3

3

2

4

Algorithm Theory Fabian Kuhn 8

Formally…

Reduction: Get graph 𝐺′ from graph as follows

• Node set of 𝐺′ is 𝑉 ∪ 𝑠∗, 𝑡∗

• Edge set is 𝐸 and edges
– (𝑠∗, 𝑣) for all 𝑣 with 𝑑𝑣 < 0, capacity of edge is −𝑑𝑣
– (𝑣, 𝑡∗) for all 𝑣 with 𝑑𝑣 > 0, capacity of edge is 𝑑𝑣

Observations:

• Capacity of min 𝑠∗-𝑡∗ cut is at most 𝐷 (e.g., the cut 𝑠∗, 𝑉 ∪ {𝑡∗)

• A feasible circulation on 𝐺 can be turned into a feasible flow of
value 𝐷 of 𝐺′ by saturating all (𝑠∗, 𝑣) and (𝑣, 𝑡∗) edges.

• Any flow of 𝐺′ of value 𝐷 induces a feasible circulation on 𝐺
– 𝑠∗, 𝑣 and 𝑣, 𝑡∗ edges are saturated

– By removing these edges, we get exactly the demand constraints

Algorithm Theory Fabian Kuhn 9

Circulation with Demands

Theorem: There is a feasible circulation with demands 𝑑𝑣, 𝑣 ∈ 𝑉
on graph 𝐺 if and only if there is a flow of value 𝐷 on 𝐺′.

• If all capacities and demands are integers, there is a valid
integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph 𝐺 has a feasible circulation with demands
𝑑𝑣, 𝑣 ∈ 𝑉 if and only if the sum of all demands is zero and for all
cuts (𝐴, 𝐵),

𝑣∈𝐵

𝑑𝑣 ≤ 𝑐(𝐴, 𝐵) .

Algorithm Theory Fabian Kuhn 10

Circulation: Demands and Lower Bounds

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.

Algorithm Theory Fabian Kuhn 11

Solution Idea

• Define initial circulation 𝑓0 𝑒 = ℓ𝑒
Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓0 𝑒 ≤ 𝑐𝑒

• Define

𝐿𝑣 ≔ 𝑓0
in 𝑣 − 𝑓0

out 𝑣 =

𝑒 into 𝑣

ℓ𝑒 −

𝑒 out of 𝑣

ℓ𝑒

• If 𝐿𝑣 = 𝑑𝑣, demand condition is satisfied at 𝑣 by 𝑓0, otherwise,
we need to superimpose another circulation 𝑓1 such that

𝑑𝑣
′ ≔ 𝑓1

in 𝑣 − 𝑓1
out 𝑣 = 𝑑𝑣 − 𝐿𝑣

• Remaining capacity of edge 𝑒: 𝑐𝑒
′ ≔ 𝑐𝑒 − ℓ𝑒

• We get a circulation problem with new demands 𝑑𝑣
′ , new

capacities 𝑐𝑒
′ , and no lower bounds

Algorithm Theory Fabian Kuhn 12

Eliminating a Lower Bound: Example

-3 2

-3

4

3 3

2

2 2

Lower bound of 2

-5 2

-1

4

1 3

2

2 2

Algorithm Theory Fabian Kuhn 13

Reduce to Problem Without Lower Bounds

Graph 𝑮 = (𝑽, 𝑬):

• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand: For each node 𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):

• For each edge 𝑒 ∈ 𝐸: 𝑐𝑒
′ = 𝑐𝑒 − ℓ𝑒

• For each node 𝑣 ∈ 𝑉: 𝑑𝑣
′ = 𝑑𝑣 − 𝐿𝑣

𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆

Flow: ℓ𝒆

Algorithm Theory Fabian Kuhn 14

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓′ 𝑒 + ℓ𝑒 is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓′ 𝑒 ≤ 𝑐𝑒 − ℓ𝑒
– Demand conditions:

𝑓in 𝑣 − 𝑓out 𝑣 =

𝑒 into 𝑣

ℓ𝑒 + 𝑓′ 𝑒 −

𝑒 out of 𝑣

ℓ𝑒 + 𝑓′ 𝑒

= 𝐿𝑣 + 𝑑𝑣 − 𝐿𝑣 = 𝑑𝑣

• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ𝑒 is circulation in 𝐺′
– The capacity constraints are satisfied because ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒
– Demand conditions:

𝑓′in 𝑣 − 𝑓′out 𝑣 =

𝑒 into 𝑣

𝑓 𝑒 − ℓ𝑒 −

𝑒 out of 𝑣

𝑓 𝑒 − ℓ𝑒

= 𝑑𝑣 − 𝐿𝑣

Algorithm Theory Fabian Kuhn 15

Integrality

Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:

• Graph 𝐺′ has only integral capacities and demands

• Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

• The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.

