

Algorithm Theory

Chapter 6 Graph Algorithms

Part VI: Circulation

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands are exactly satisfied

• The circulation problem is a feasibility rather than a maximization problem

Circulations with Demands: Formally

Given: Directed network G = (V, E) with

- Edge capacities $c_e \ge 0$ for all $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $d_{v} > 0$: node needs flow and therefore is a sink
 - $-d_{v} < 0$: node has a supply of $-d_{v}$ and is therefore a source
 - $d_v = 0$: node is neither a source nor a sink

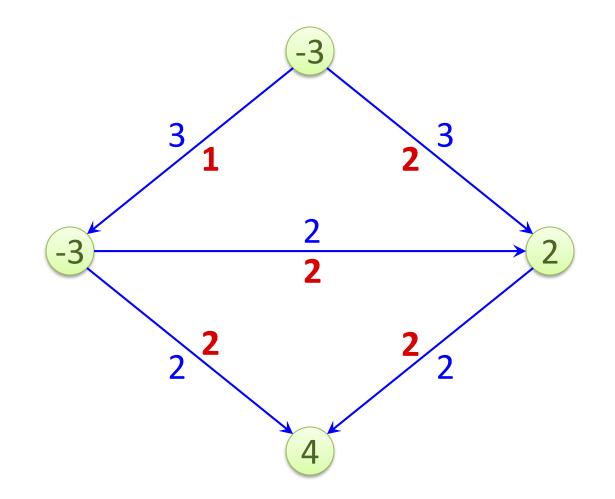
Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: 0 \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory

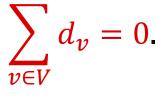
Example



Condition on Demands

FREBURG

Claim: If there exists a feasible circulation with demands d_v for $v \in V$, then



Proof:

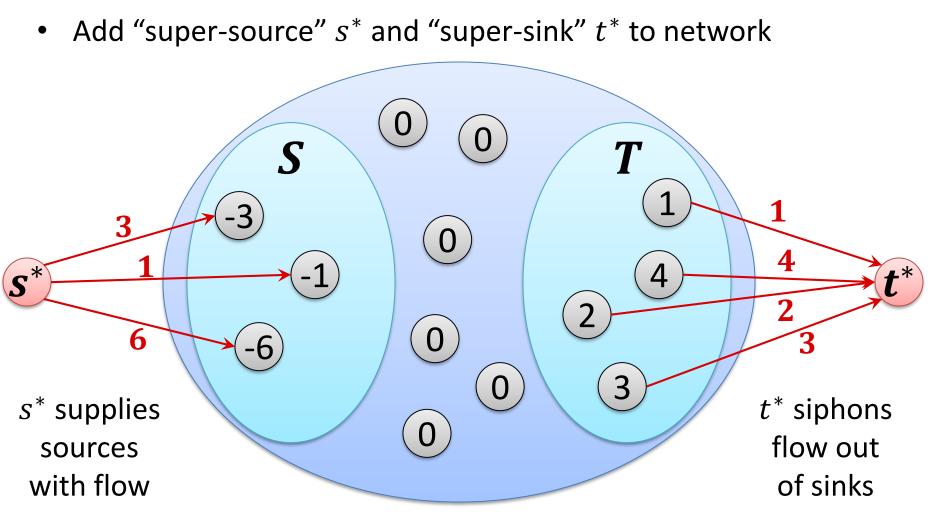
•
$$\sum_{v} d_{v} = \sum_{v} \left(f^{\text{in}}(v) - f^{\text{out}}(v) \right)$$

f(e) of each edge e appears twice in the above sum with different signs → overall sum is 0

Total supply = total demand:

Define
$$D \coloneqq \sum_{v:d_v < 0} -d_v = \sum_{v:d_v > 0} d_v$$

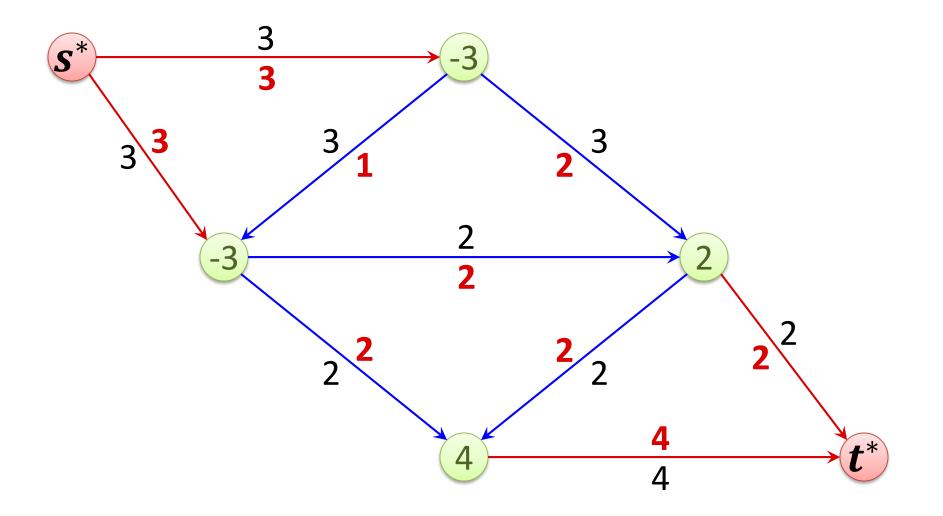
Reduction to Maximum Flow



• valid circulations \Leftrightarrow valid s^* - t^* flow that saturates all red edges.

Algorithm Theory

Example



Formally...

Reduction: Get graph G' from graph as follows

- Node set of G' is $V \cup \{s^*, t^*\}$
- Edge set is *E* and edges
 - $-(s^*, v)$ for all v with $d_v < 0$, capacity of edge is $-d_v$
 - (v, t^*) for all v with $d_v > 0$, capacity of edge is d_v

Observations:

- Capacity of min s^*-t^* cut is at most D (e.g., the cut $(s^*, V \cup \{t^*\})$
- A feasible circulation on G can be turned into a feasible flow of value D of G' by saturating all (s*, v) and (v, t*) edges.
- Any flow of G' of value D induces a feasible circulation on G
 - (s^*, v) and (v, t^*) edges are saturated
 - By removing these edges, we get exactly the demand constraints

Circulation with Demands

Theorem: There is a feasible circulation with demands $d_v, v \in V$ on graph G if and only if there is a flow of value D on G'.

• If all capacities and demands are integers, there is a valid integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands $d_v, v \in V$ if and only if the sum of all demands is zero and for all cuts (A, B),

$$\sum_{v\in B}d_v\leq c(A,B).$$

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ and lower bounds $0 \le \ell_e \le c_e$ for $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $d_{v} > 0$: node needs flow and therefore is a sink
 - $-d_{v} < 0$: node has a supply of $-d_{v}$ and is therefore a source
 - $d_v = 0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $\ell_e \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory

Solution Idea

- Define initial circulation $f_0(e) = \ell_e$ Satisfies capacity constraints: $\forall e \in E : \ell_e \leq f_0(e) \leq c_e$
- Define

$$L_{v} \coloneqq f_{0}^{\mathrm{in}}(v) - f_{0}^{\mathrm{out}}(v) = \sum_{e \mathrm{into} v} \ell_{e} - \sum_{e \mathrm{out} \mathrm{of} v} \ell_{e}$$

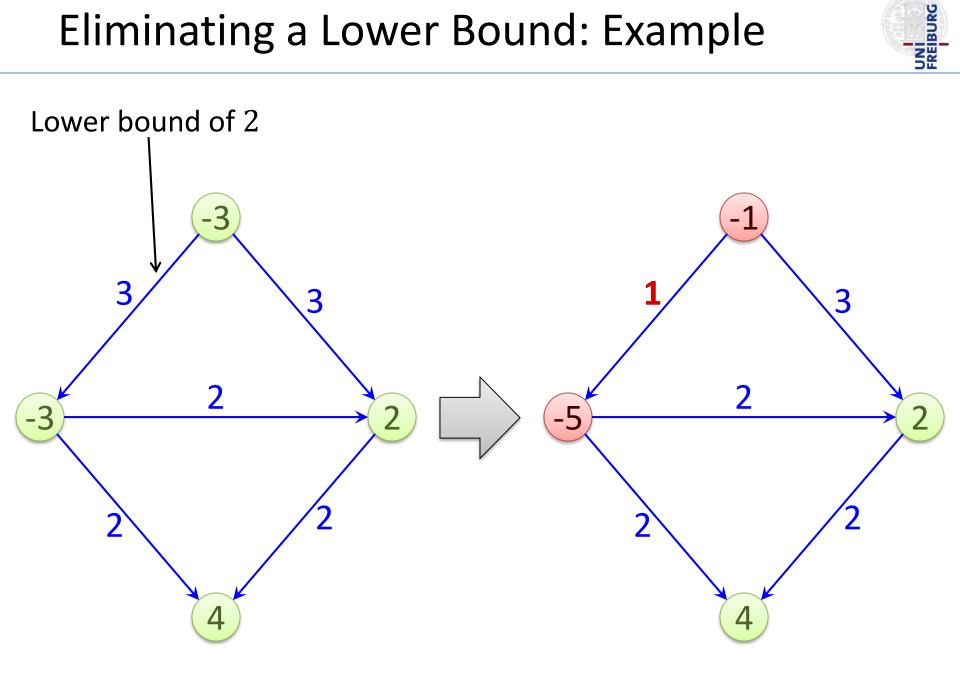
• If $L_v = d_v$, demand condition is satisfied at v by f_0 , otherwise, we need to superimpose another circulation f_1 such that

$$d'_{\nu} \coloneqq f_1^{\text{in}}(\nu) - f_1^{\text{out}}(\nu) = d_{\nu} - L_{\nu}$$

- Remaining capacity of edge $e: c'_e \coloneqq c_e \ell_e$
- We get a circulation problem with new demands d'_{v} , new capacities c'_{e} , and no lower bounds

Algorithm Theory

Eliminating a Lower Bound: Example

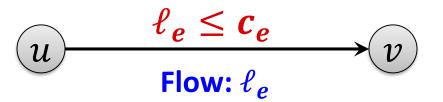


Reduce to Problem Without Lower Bounds

Graph G = (V, E):

- Capacity: For each edge $e \in E$: $\ell_e \leq f(e) \leq c_e$
- Demand: For each node $v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Model lower bounds with supplies & demands:



Create Network G' (without lower bounds):

- For each edge $e \in E: c'_e = c_e \ell_e$
- For each node $v \in V: d'_v = d_v L_v$

EIBURG

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in G (with lower bounds) if and only if there is feasible circulation in G' (without lower bounds).

- Given circulation f' in G', $f(e) = f'(e) + \ell_e$ is circulation in G
 - The capacity constraints are satisfied because $f'(e) \leq c_e \ell_e$
 - Demand conditions:

$$f^{\text{in}}(v) - f^{\text{out}}(v) = \sum_{e \text{ into } v} \left(\ell_e + f'(e)\right) - \sum_{e \text{ out of } v} \left(\ell_e + f'(e)\right)$$
$$= L_v + \left(d_v - L_v\right) = d_v$$

- Given circulation f in G, $f'(e) = f(e) \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $\ell_e \leq f(e) \leq c_e$
 - Demand conditions:

$$f^{\prime \text{in}}(v) - f^{\prime \text{out}}(v) = \sum_{e \text{ into } v} (f(e) - \ell_e) - \sum_{e \text{ out of } v} (f(e) - \ell_e)$$
$$= d_v - L_v$$

Algorithm Theory

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph G' has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution
- It also follows that with the max flow algorithms we studied, we get an integral feasible circulation solution.

Algorithm Theory