IIF

 Algorithm Theory

 Algorithm Theory}

Chapter 7
 Randomized Algorithms

Part II:
Primality Testing

Fabian Kuhn

Primality Testing

Problem: Given a natural number $n \geq 2$, is n a prime number?

Simple primality test:

1. if n is even then
2. return $(n=2)$
3. for $i:=1$ to $[\sqrt{n} / 2]$ do
4. if $2 i+1$ divides n then
5. return false
6. return true

- Running time: $O(\sqrt{n})$

If n is not prime, one of the prime factors p is $p \leq\lfloor\sqrt{n}\rfloor$:

$$
2 i+1 \leq\lfloor\sqrt{n}\rfloor \Rightarrow i \leq\left\lfloor\frac{\sqrt{n}}{2}\right\rfloor
$$

Size of the input $O(\log n)$ bits:
\sqrt{n} is exponential in the size of the input.

A Better Algorithm?

- How can we test primality efficiently?
- We need a little bit of basic number theory...

$$
\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}, \text { multiplication } \bmod p
$$

Square Roots of Unity: $\ln \mathbb{Z}_{p}^{*}$, where p is a prime, the only solutions of the equation $x^{2} \equiv 1(\bmod p)$ are $x \equiv \pm 1(\bmod p)$
$\begin{aligned} x^{2} & \equiv 1(\bmod p) \\ x^{2}-1 & \equiv 0(\bmod p) \\ (x+1) \cdot(x-1) & \equiv 0(\bmod p)\end{aligned}$

Not true if \boldsymbol{p} is not prime:

$$
\begin{aligned}
& p=15, \quad x=4 \\
& x^{2}=16 \equiv 1(\bmod 15)
\end{aligned}
$$

For an integer c

$$
(x+1) \cdot(x-1)=c \cdot p
$$

p is a prime factor of $\boldsymbol{x}+1$ or of $\boldsymbol{x}-1$:

$$
x+1 \equiv 0(\bmod p) \text { or }
$$

$$
x-1 \equiv 0(\bmod p)
$$

- If we find an $x \not \equiv \pm 1(\bmod n)$ such that $x^{2} \equiv 1(\bmod n)$, we can conclude that n is not a prime.

Algorithm Idea

Claim: Let $p>2$ be a prime number such that $p-1=2^{s} d$ for an integer $s \geq 1$ and some odd integer $d \geq 1$. Then for all $a \in \mathbb{Z}_{p}^{*}$,

$$
a^{d} \equiv 1(\bmod p) \text { or } a^{2^{r} d} \equiv-1(\bmod p) \text { for some } 0 \leq r<s
$$

Proof:

Recall that $x^{2} \equiv 1(\bmod p) \Leftrightarrow x \equiv-1,1(\bmod p)$

- Fermat's Little Theorem:

For every prime p and all $a \in \mathbb{Z}_{p}^{*}: a^{p-1} \equiv 1(\bmod p)$

- Consider $x_{0}, x_{1}, \ldots, x_{s}$, where $x_{i}=a^{\delta_{i}}$ for $\delta_{i}=\frac{p-1}{2^{i}}=2^{s-i} \cdot d$

$$
\underbrace{\delta_{0}=p-1}_{=2^{s} \cdot d} \underbrace{\delta_{1}=\frac{p-1}{2}}_{=2^{s-1} \cdot d} \underbrace{\delta_{2}=\frac{p-1}{4}}_{=2^{s-2} \cdot d} \quad \cdots \quad \underbrace{\delta_{s-1}=\frac{p-1}{2^{s-1}}}_{=2 \cdot d} \underbrace{\delta_{s}=\frac{p-1}{2^{s}}}_{=d}
$$

- $\forall i<s: x_{i}=x_{i+1}^{2}$, thus $x_{i} \equiv 1(\bmod p) \Longrightarrow x_{i+1} \equiv-1,1(\bmod p)$
- Fermat's Little Theorem $\Rightarrow x_{0} \equiv 1(\bmod p)$
- Thus: $\forall i \leq s: x_{i} \equiv 1(\bmod p)$ or $\exists i \leq s: x_{i} \equiv-1(\bmod p)$
- This directly implies the claim.

Primality Test

We have: If n is an odd prime and $n-1=2^{s} d$ for an integer $s \geq 1$ and an odd integer $d \geq 1$. Then for all $a \in\{1, \ldots, n-1\}$,

$$
a^{d} \equiv 1(\bmod n) \text { or } a^{2^{r} d} \equiv-1(\bmod n) \text { for some } 0 \leq r<s
$$

Idea: If we find an $a \in\{1, \ldots, n-1\}$ such that

$$
a^{d} \not \equiv 1(\bmod n) \text { and } a^{2^{r}} d \not \equiv-1(\bmod n) \text { for all } 0 \leq r<s \text {, }
$$

we can conclude that n is not a prime.

- For every odd composite $n>2$, at least $3 / 4$ of all $a \in\{2, \ldots, d-2\}$ satisfy the above condition $\neg(*)$.
- How can we find such a witness a efficiently?

Idea: pick a at random

Miller-Rabin Primality Test

- Given a natural number $n \geq 2$, is n a prime number?

Miller-Rabin Test:

1. if n is even then return $(n=2)$
2. compute s, d such that $n-1=2^{s} d$;
3. choose $a \in\{2, \ldots, n-2\}$ uniformly at random;
4. $x:=a^{d} \bmod n$;
5. if $x=1$ or $x=n-1$ then return probably prime;
6. for $r:=1$ to $s-1$ do
7. $x:=x^{2} \bmod n$;
8. if $x=n-1$ then return probably prime;
9. return composite;

Analysis

Theorem:

- If n is prime, the Miller-Rabin test always returns probably prime.
- If \boldsymbol{n} is composite, the Miller-Rabin test returns composite with probability at least $3 / 4$.

$$
\{2, \ldots, d-2\}: \text { all possible } a
$$

Proof: good $a: 3 / 4$ of all possible a

- If n is prime, the test works for all values of a
- If n is composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k}.

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_{n}: O(\log n)$ bits
- Cost of adding two numbers $x+y \bmod n$:

Time: $O(\log n)$

- Cost of multiplying two numbers $x \cdot y \bmod n$:
- Done naively, this takes time $O\left(\log ^{2} n\right)$
- It's like multiplying degree $O(\log n)$ polynomials \rightarrow use FFT to compute $z=x \cdot y$

Time: $O(\log n \cdot \log \log n \cdot \log \log \log n)$

Running Time

Cost of exponentiation $x^{d} \bmod \boldsymbol{n}$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of $d: d=\sum_{i=0}^{\left\lfloor\log _{2} d\right\rfloor} d_{i} 2^{i}$
- Fast exponentiation:

1. $y:=1$;
2. for $i:=\left\lfloor\log _{2} d\right\rfloor$ to 0 do
3. $y:=y^{2} \bmod n$;
4. if $d_{i}=1$ then $y:=y \cdot x \bmod n$;
5. return y;

- Example: $d=22=10110_{2}$

$$
x^{22}=\left(\left(\left(\left(1^{2} \cdot x\right)^{2}\right)^{2} \cdot x\right)^{2} \cdot x\right)^{2}
$$

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O\left(\log ^{2} n \cdot \log \log n \cdot \log \log \log n\right)$.

1. if n is even then return $(n=2)$
2. compute s, d such that $n-1=2^{s} d$;

Time $O(\log n)$
3. choose $a \in\{2, \ldots, n-2\}$ uniformly at random;
4. $x:=a^{d} \bmod n$; $O(\log d)=O(\log n)$ multiplications
5. if $x=1$ or $x=n-1$ then return probably prime;
6. for $r:=1$ to $s-1$ do $\quad s=O(\log n)$ iterations
7. $x:=x^{2} \bmod n ; \quad 1$ multiplication per iteration
8. if $x=n-1$ then return probably prime;
9. return composite;

$$
O(\log n) \text { multiplications } \Rightarrow \text { time } O\left(\log ^{2} n \cdot \log \log n \cdot \log \log \log n\right)
$$

Deterministic Primality Test

- If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm
\rightarrow It is then sufficient to try all $a \in\left\{1, \ldots, 2 \ln ^{2} n\right\}$
- It has long not been proven whether a deterministic, polynomial-time algorithm exists

hides factors polynomial in $\log \log n$

- In 2002, Agrawal, Kayal, and Saxena gave an $\tilde{O}\left(\log ^{12} n\right)$-time deterministic algorithm
- Has been improved to $\tilde{O}\left(\log ^{6} n\right)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm

