

Algorithm Theory

Chapter 7 Randomized Algorithms

Part II: Primality Testing

Primality Testing

Problem: Given a natural number $n \ge 2$, is n a prime number?

Simple primality test:

- 1. **if** *n* is even **then**
- 2. return (n = 2)
- 3. for $i \coloneqq 1$ to $\lfloor \sqrt{n}/2 \rfloor$ do
- 4. **if** 2i + 1 divides *n* **then**
- 5. return false
- 6. return true
- Running time: $O(\sqrt{n})$

If *n* is not prime, one of the prime factors *p* is $p \leq \lfloor \sqrt{n} \rfloor$:

$$2i + 1 \le \left\lfloor \sqrt{n} \right\rfloor \Longrightarrow i \le \left\lfloor \frac{\sqrt{n}}{2} \right\rfloor$$

Size of the input $O(\log n)$ bits:

 \sqrt{n} is *exponential* in the size of the input.

A Better Algorithm?

• How can we test primality efficiently?

We need a little bit of basic number theory...

 $\mathbb{Z}_p^* = \{1, \dots, p-1\},$ multiplication mod p

Square Roots of Unity: $\ln \mathbb{Z}_p^*$, where p is a prime, the only solutions of the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$

$$x^{2} \equiv 1 \pmod{p}$$

$$x^{2} - 1 \equiv 0 \pmod{p}$$

$$(x + 1) \cdot (x - 1) \equiv 0 \pmod{p}$$

$$x^{2} - 1 \equiv 0 \pmod{p}$$

$$(x + 1) \cdot (x - 1) = c \cdot p$$

$$(x + 1) \cdot (x - 1) = c \cdot p$$

$$p \text{ is a prime factor}$$
of $x + 1 \text{ or of } x - 1$:
$$x + 1 \equiv 0 \pmod{p} \text{ or }$$

$$x - 1 \equiv 0 \pmod{p}$$

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Algorithm Theory

Algorithm Idea

Claim: Let p > 2 be a prime number such that $p - 1 = 2^{s}d$ for an integer $s \ge 1$ and some odd integer $d \ge 1$. Then for all $a \in \mathbb{Z}_{p}^{*}$,

 $a^d \equiv 1 \pmod{p}$ or $a^{2^r d} \equiv -1 \pmod{p}$ for some $0 \le r < s$.

Proof:

Recall that $x^2 \equiv 1 \pmod{p} \Leftrightarrow x \equiv -1, 1 \pmod{p}$

- Fermat's Little Theorem: For every prime p and all $a \in \mathbb{Z}_p^* : a^{p-1} \equiv 1 \pmod{p}$
- Consider $x_0, x_1, ..., x_s$, where $x_i = a^{\delta_i}$ for $\delta_i = \frac{p-1}{2^i} = 2^{s-i} \cdot d$ $\delta_0 = p-1$ $\delta_1 = \frac{p-1}{2}$ $\delta_2 = \frac{p-1}{4}$... $\delta_{s-1} = \frac{p-1}{2^{s-1}}$ $\delta_s = \frac{p-1}{2^s}$ $= 2^{s} \cdot d$ $= 2^{s-1} \cdot d$ $= 2^{s-2} \cdot d$ $= 2 \cdot d$ = d
- $\forall i < s : x_i = x_{i+1}^2$, thus $x_i \equiv 1 \pmod{p} \Rightarrow x_{i+1} \equiv -1, 1 \pmod{p}$
- Fermat's Little Theorem $\Rightarrow x_0 \equiv 1 \pmod{p}$
- Thus: $\forall i \leq s : x_i \equiv 1 \pmod{p}$ or $\exists i \leq s : x_i \equiv -1 \pmod{p}$
 - This directly implies the claim.

Algorithm Theory

Primality Test

*

We have: If n is an odd prime and $n - 1 = 2^{s}d$ for an integer $s \ge 1$ and an odd integer $d \ge 1$. Then for all $a \in \{1, ..., n - 1\}$,

 $a^d \equiv 1 \pmod{n}$ or $a^{2^r d} \equiv -1 \pmod{n}$ for some $0 \le r < s$.

Idea: If we find an $a \in \{1, ..., n-1\}$ such that $a^d \not\equiv 1 \pmod{n}$ and $a^{2^r d} \not\equiv -1 \pmod{n}$ for all $0 \le r < s$, we can conclude that n is not a prime.

- For every odd composite n > 2, at least ³/₄ of all a ∈ {2, ..., d 2} satisfy the above condition ¬(*).
- How can we find such a *witness a* efficiently?

Idea: pick a at random

Miller-Rabin Primality Test

• Given a natural number $n \ge 2$, is n a prime number?

Miller-Rabin Test:

- 1. **if** *n* is even **then return** (n = 2)
- 2. compute *s*, *d* such that $n 1 = 2^{s}d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for $r \coloneqq 1$ to s 1 do
- 7. $x \coloneqq x^2 \mod n;$
- 8. if x = n 1 then return probably prime;
- 9. return composite;

Analysis

Theorem:

- If *n* is prime, the Miller-Rabin test always returns probably prime.
- If *n* is composite, the Miller-Rabin test returns composite with probability at least $\frac{3}{4}$. { $\{2, ..., d-2\}$: all possible *a*

Proof:

- If *n* is prime, the test works for all values of *a*
- If *n* is composite, we need to pick a good witness *a*

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k} .

good $a: \frac{3}{4}$ of all possible a

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_n$: $O(\log n)$ bits
- Cost of adding two numbers $x + y \mod n$:
- Cost of multiplying two numbers $x \cdot y \mod n$:
 - Done naively, this takes time $O(\log^2 n)$
 - It's like multiplying degree $O(\log n)$ polynomials \rightarrow use FFT to compute $z = x \cdot y$

Time: $O(\log n \cdot \log \log n \cdot \log \log \log n)$

Running Time

Cost of exponentiation $x^d \mod n$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of d: $d = \sum_{i=0}^{\lfloor \log_2 d \rfloor} d_i 2^i$
- Fast exponentiation:
 - 1. $y \coloneqq 1$;
 - 2. for $i \coloneqq \lfloor \log_2 d \rfloor$ to 0 do
 - 3. $y \coloneqq y^2 \mod n;$
 - 4. **if** $d_i = 1$ **then** $y \coloneqq y \cdot x \mod n$;
 - 5. **return** *y*;
- Example: $d = 22 = 10110_2$

$$x^{22} = \left(\left(\left((1^2 \cdot x)^2\right)^2 \cdot x\right)^2 \cdot x\right)^2$$

Running Time

Time $O(\log n)$

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$.

- 1. **if** *n* is even **then return** (n = 2)
- 2. compute *s*, *d* such that $n 1 = 2^{s}d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \mod n$; $O(\log d) = O(\log n)$ multiplications
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for $r \coloneqq 1$ to s 1 do $s = O(\log n)$ iterations
- 7. $x \coloneqq x^2 \mod n$; 1 multiplication per iteration
- 8. if x = n 1 then return probably prime;
- 9. return composite;

 $O(\log n)$ multiplications \Rightarrow time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$

Algorithm Theory

Deterministic Primality Test

 If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm

→ It is then sufficient to try all $a \in \{1, ..., 2 \ln^2 n\}$

 It has long not been proven whether a deterministic, polynomial-time algorithm exists hides factors polynomial in log log n

In 2002, Agrawal, Kayal, and Saxena gave an $O(\log^{12} n)$ -time deterministic algorithm

– Has been improved to $\tilde{O}(\log^6 n)$

• In practice, the randomized Miller-Rabin test is still the fastest algorithm