## IIF <br> Algorithm Theory

Chapter 7

## Randomized Algorithms

Part III:<br>Randomized Quicksort : Expected Time

Fabian Kuhn

## Randomized Quicksort


$A_{\rho} \leq v \quad v$
$A_{r} \geq v$ partition
function Quick ( $A$ : array): array
\{returns the sorted array $A$ \}
begin
if $\operatorname{size}(A) \leq 1$ then return $A$
else $\{$ choose pivot element $v$ in $A$; partition $A$ into $A_{\ell}$ with elements $\geq v$, and $A_{r}$ with elements $\geq v$ return Quick $\left(A_{\ell}\right) \quad v \mid$ Quick $\left(A_{r}\right)$
end;

## Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot
Running Time of sorting $n$ elements:

- Let's just count the number of comparisons
- In the partitioning step, all $n-1$ non-pivot elements have to be compared to the pivot
- Number of comparisons:
depends on choice of pivot

$$
n-1+\# \text { comparisons in recursive calls }
$$

- If rank of pivot is $r$ :
recursive calls with $\boldsymbol{r}-\mathbf{1}$ and $\boldsymbol{n}-\boldsymbol{r}$ elements

| $r-1$ |  |
| :---: | :---: |
| $1,2,3, \ldots, r-1, r, r+1, \ldots$, | $n-1, n$ |

## Law of Total Expectation

- Given a random variable $X$ and
- a set of events $A_{1}, \ldots, A_{k}$ that partition $\Omega$
- E.g., for a second random variable $Y$, we could have

$$
A_{i}:=\{\omega \in \Omega: Y(\omega)=i\}
$$

## Law of Total Expectation

$$
\mathbb{E}[X]=\sum_{i=1}^{k} \mathbb{P}\left(A_{i}\right) \cdot \mathbb{E}\left[X \mid A_{i}\right]=\sum_{y} \mathbb{P}(Y=y) \cdot \mathbb{E}[X \mid Y=y]
$$

## Example:

- $X$ : outcome of rolling a die Clearly: $\mathbb{E}[X]=\frac{1+2+3+4+5+6}{6}=3.5$
- $A_{0}=\{X$ is even $\}, A_{1}=\{X$ is odd $\}$



## Randomized Quicksort Analysis

## Random variables:

- $C$ : total number of comparisons (for a given array of length $n$ )
- $R$ : rank of first pivot
- $C_{\ell}, C_{r}$ : number of comparisons for the 2 recursive calls

$$
\mathbb{E}[C]=\mathbb{E}\left[n-1+C_{\ell}+C_{r}\right]=n-1+\mathbb{E}\left[C_{\ell}\right]+\mathbb{E}\left[C_{r}\right]
$$

Law of Total Expectation:

## Linearity of Expectation:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Exp. \#comp.

$$
\mathbb{E}[C]=\sum_{\substack{r=1 \\ n}}^{n} \mathbb{P}(R=r) \cdot \mathbb{E}[C \mid R=r]
$$ to sort array of length $n$

$$
\begin{aligned}
&=\sum_{r=1}^{n} \mathbb{P}(R=r) \cdot\left(n-1+\mathbb{E}\left[C_{\ell} \mid R=r\right]+\mathbb{E}\left[C_{r} \mid R=r\right]\right) \\
& \begin{array}{c}
\text { Exp. \#comp. to sort } \\
\text { array of length } r-1
\end{array} \\
& \begin{array}{c}
\text { Exp. \#comp. to sort } \\
\text { array of length } n-r
\end{array}
\end{aligned}
$$

## Randomized Quicksort Analysis

We have seen that:

$$
\begin{aligned}
& \mathbb{E}[C]=\sum_{r=1}^{n} \mathbb{P}(R=r) \cdot\left(n-1+\mathbb{E}\left[C_{\ell} \mid R=r\right]+\mathbb{E}\left[C_{r} \mid R=r\right]\right) \\
& \text { efine: } \quad \\
& =1 / n
\end{aligned}
$$

- $\boldsymbol{T}(\boldsymbol{n})$ : expected number of comparisons when sorting $n$ elements

$$
\begin{aligned}
\mathbb{E}[C] & =T(n) \\
\mathbb{E}\left[C_{\ell} \mid R=r\right] & =T(r-1) \\
\mathbb{E}\left[C_{r} \mid R=r\right] & =T(n-r)
\end{aligned}
$$

Recursion:

$$
\begin{aligned}
& T(n)=\sum_{r=1}^{n} \frac{1}{n} \cdot(n-1+T(r-1)+T(n-r)) \\
& T(0)=T(1)=0
\end{aligned}
$$

## Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting $n$ elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof: (by induction on $n$ )
$T(n)=\sum_{r=1}^{n} \frac{1}{n} \cdot(n-1+T(r-1)+T(n-r)), \quad T(0)=T(1)=0$
$=n-1+\frac{1}{n} \cdot \sum_{i=0}^{n-1}(T(i)+T(n-i-1))$
$=n-1+\frac{2}{n} \cdot \sum_{i=1}^{n-1} T(i)$
induction
hypothesis

$$
\begin{aligned}
& \underbrace{\leq n-1}+\frac{4}{n} \cdot \sum_{i=1}^{n-1} i \cdot \ln i \\
& <n-1+\frac{4}{n} \cdot \int_{1}^{n} x \ln x d x
\end{aligned}
$$

## Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting $n$ elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

$$
\begin{aligned}
& \quad T(n) \leq n-1+\frac{4}{n} \cdot \int_{1}^{n} x \ln x d x \\
& T(n) \leq n-1+\frac{4}{n} \cdot\left[\frac{n^{2} \ln n}{2}-\frac{n^{2}}{4}+\frac{1}{4}\right] \quad \int x \ln x \\
&=n-1+2 n \ln n-n+1 \\
&=2 n \ln n+\left(\frac{1}{n}-1\right) \\
&< 2 n \ln n
\end{aligned}
$$

## Alternative Randomized Quicksort Analysis

Array to sort: $[7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]$ Viewing quicksort run as a tree:


## Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
$\rightarrow$ every 2 elements can only be compared once!
- W.l.o.g., assume that the elements to sort are $1,2, \ldots, n$
- Elements $i$ and $j$ are compared if and only if either $i$ or $j$ is a pivot before any element $h: i<h<j$ is chosen as pivot
- i.e., iff $i$ is an ancestor of $j$ or $j$ is an ancestor of $i$


$$
\mathbb{P}(\text { comparison between } i \text { and } j)=\frac{2}{j-i+1}
$$

## Counting Comparisons

Random variable for every pair of elements $(i, j), i<j$ :

$$
\begin{gathered}
X_{i j}= \begin{cases}1, & \text { if there is a comparison between } i \text { and } j \\
0, & \text { otherwise }\end{cases} \\
\mathbb{P}\left(X_{i j}=1\right)=\frac{2}{j-i+1}, \quad \mathbb{E}\left[X_{i j}\right]=\frac{2}{j-i+1}
\end{gathered}
$$

Number of comparisons: $X$

$$
X=\sum_{i<j} X_{i j}
$$

- What is $\mathbb{E}[X]$ ?


## Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting $n$ elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

- Linearity of expectation:

For all random variables $X_{1}, \ldots, X_{n}$ and all $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\begin{gathered}
\mathbb{E}\left[\sum_{i}^{n} a_{i} X_{i}\right]=\sum_{i}^{n} a_{i} \mathbb{E}\left[X_{i}\right] . \\
X=\sum_{i<j} X_{i j} \Rightarrow \mathbb{E}[X]=\mathbb{E}\left[\sum_{i<j} X_{i j}\right]=\sum_{i<j} \mathbb{E}\left[X_{i j}\right] \\
=\sum_{i<j} \frac{2}{j-i+1}=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{gathered}
$$

## Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting $n$ elements using randomized quicksort is $T(n) \leq 2 n \ln n$. Proof:

$$
\mathbb{E}[X]=2 \cdot \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}=2 \cdot \sum_{i=1}^{n-1} \sum_{l=2}^{n-i+1} \frac{1}{l}
$$

Harmonic Series:

$$
\begin{aligned}
\leq 2 \cdot \sum_{i=1}^{n-1} \sum_{\ell=2}^{n} \frac{1}{\ell} \\
=H(n)-1
\end{aligned}
$$

$$
\begin{gathered}
H(k):=\sum_{i=1}^{k} \frac{1}{i} \\
H(k) \leq 1+\ln k
\end{gathered}
$$

$$
=2 \cdot(n-1) \cdot(H(n)-1)
$$

$$
\leq 2 \cdot(n-1) \cdot \ln n
$$

