
Algorithm Theory

Chapter 7

Randomized Algorithms

Part IV:
Rand. Quicksort : High Probability Bound

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Quicksort: High Probability Bound

• We have seen that the number of comparisons of randomized
quicksort is 𝑂(𝑛 log 𝑛) in expectation.

• Can we also show that the number of comparisons is
𝑂(𝑛 log 𝑛) with high probability?

• Recall:

On each recursion level, each pivot is compared once with
each other element that is still in the same “part”

Algorithm Theory Fabian Kuhn 3

Counting Number of Comparisons

• We looked at 2 ways to count the number of comparisons
– recursive characterization of the expected number

– number of different pairs of values that are compared

Let’s consider yet another way:

• Each comparison is between a pivot and a non-pivot

• How many times is a specific array element 𝑥 compared as a
non-pivot?

Element 𝑥 is compared as a non-pivot to a pivot once in every
recursion level until one of the following two conditions apply:

1. 𝑥 is chosen as a pivot

2. 𝑥 is alone

Algorithm Theory Fabian Kuhn 4

Successful Recursion Level

• Consider a specific recursion level ℓ
– Where the first recursion level is level 1

Define 𝑲ℓ as follows:

• If 𝑥 is contained in a subarray on recursion level ℓ, then 𝐾ℓ is
defined as the length of the subarray containing 𝑥 on level ℓ.
– We therefore have 𝐾1 = 𝑛 and 𝐾ℓ+1 ≤ 𝐾ℓ for all ℓ ≥ 1

• If 𝑥 has been chosen as a pivot before level ℓ, we set 𝐾ℓ ≔ 1

#comparisons of 𝑥 as non-pivot ≤ #levels ℓ for which 𝐾ℓ > 1

Definition: We say that recursion level ℓ is successful for element
𝑥 iff the following is true:

𝐾ℓ+1 = 1 or 𝐾ℓ+1 ≤
2

3
⋅ 𝐾ℓ

Algorithm Theory Fabian Kuhn 5

Successful Recursion Level

Lemma: For every recursion level ℓ and every array element 𝑥, it
holds that level ℓ is successful for 𝑥 with probability at least Τ1 3,
independently of what happens in other recursion levels.

Proof:

• Assume that 𝐾ℓ > 1, otherwise level ℓ is trivially successful

• If pivot is in the middle part, both remaining parts have size

≤ 𝐾ℓ − ൗ𝐾ℓ
3 − 1 ≤ ൗ2 3 ⋅ 𝐾ℓ.

– In this case, level ℓ is successful

• The probability that the pivot in in the middle part is ≥ Τ1 3.

≥ ൗ𝐾ℓ
3 = ൗ𝐾ℓ

3 ≥ ൗ𝐾ℓ
3

Algorithm Theory Fabian Kuhn 6

Number of Successful Recursion Levels

Lemma: If among the first ℓ recursion levels, at least log Τ3 2
(𝑛)

are successful for element 𝑥, we have 𝐾ℓ+1 = 1.

Proof:

• We know that
𝐾1 = 𝑛, ∀𝑖 ≥ 1 ∶ 𝐾𝑖+1 ≤ 𝐾𝑖

• If level 𝑖 is successful, then 𝐾𝑖+1 ≤ Τ2 3 ⋅ 𝐾𝑖 or 𝐾𝑖+1 = 1

• If 𝑠 among the first ℓ levels are successful, then

𝐾ℓ+1 ≤ max 1, 𝑛 ⋅ ൗ2 3
𝑠

• If 𝑠 ≥ log Τ3 2
(𝑛), then 𝐾ℓ+1 ≤ 1.

Algorithm Theory Fabian Kuhn 7

Chernoff Bounds

• Let 𝑋1, … , 𝑋𝑛 be independent 0-1 random variables and define
𝑝𝑖 ≔ ℙ(𝑋𝑖 = 1).

• Consider the random variable 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

• We have 𝜇 ≔ 𝔼 𝑋 = σ𝑖=1
𝑛 𝔼 𝑋𝑖 = σ𝑖=1

𝑛 𝑝𝑖

Chernoff Bound (Lower Tail):

∀𝜹 > 𝟎: ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆− Τ𝜹𝟐𝝁 𝟐

Chernoff Bound (Upper Tail):

∀𝜹 > 𝟎: ℙ 𝑿 > 𝟏 + 𝜹 𝝁 <
𝒆𝜹

𝟏 + 𝜹 𝟏+𝜹

𝝁

< 𝒆− Τ𝜹𝟐𝝁 𝟑

holds for 𝜹 ≤ 𝟏

If 𝑝𝑖 = 𝑝 for all 𝑖:

𝑋 ∼ Bin 𝑛, 𝑝

Algorithm Theory Fabian Kuhn 8

Chernoff Bounds, Example

Assume that a fair coin is flipped 𝑛 times. What is the probability to
have

1. less than 𝑛/3 heads?

2. more than 0.51𝑛 tails?

3. less than Τ𝑛 2− 𝑐 ⋅ 𝑛 ln 𝑛 tails?

𝑝𝑖 = 𝑝 =
1

2
, 𝜇 ≔ 𝔼 𝑋 = 𝑛𝑝 =

𝑛

2

ℙ 𝑋 <
𝑛

3
= ℙ 𝑋 < 1 −

1

3
⋅
𝑛

2
< 𝑒

−
1
2⋅
1
32
⋅
𝑛
2 = 𝑒−𝑛/36

ℙ 𝑋 < 1 + 0.02 ⋅
𝑛

2
< 𝑒−

0.022

3 ⋅
𝑛
2 ≈ 𝑒−0.0000667𝑛

ℙ 𝑋 < 1 −
2 𝑐 ⋅ 𝑛 ln 𝑛

𝑛
⋅
𝑛

2
< 𝑒

−
4𝑐⋅𝑛 ln 𝑛

2𝑛2
⋅
𝑛
2 = 𝑒−𝑐⋅ln 𝑛 =

1

𝑛𝑐

ℙ 𝑋 < 1 − 𝛿 𝜇 < 𝑒−
𝛿2

2 𝜇

ℙ 𝑋 > 1 + 𝛿 𝜇 < 𝑒−
𝛿2

3 𝜇

With high probability, #heads/tails =
𝑛

2
± 𝑂 𝑛 log 𝑛

Algorithm Theory Fabian Kuhn 9

Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a non-
pivot, 𝑥 is compared to a pivot at most 𝑂 log 𝑛 times.

Proof:

• Consider some level 𝑖 ≥ 1, and let if level 𝑖 not successful

𝑞𝑖 ≔ ℙ level 𝑖 successful for 𝑥 | history up to level 𝑖

• Previous lemma ⟹𝑞𝑖 ≥ Τ1 3

• Define random variable

𝑋𝑖 ≔ ൝
0 if level 𝑖 not successful for 𝑥

1 with probability Τ1 3
𝑞𝑖

if level 𝑖 successful for 𝑥

• Then, ℙ 𝑋𝑖 = 1 = Τ1 3 and 𝑋𝑖 are independent for different 𝑖

Algorithm Theory Fabian Kuhn 10

Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a non-
pivot, 𝑥 is compared to a pivot at most 𝑂 log 𝑛 times.

Proof:

• 𝑋𝑖 independent, ℙ 𝑋𝑖 = 1 = Τ1 3, 𝑋𝑖 = 1 ⟹ level 𝑖 successful

• Consider the first 𝑡 levels and define

– 𝔼 𝑋 = Τ1 3 ⋅ 𝑡

– 𝑋 ≤ successful levels for 𝑥 among first 𝑡 levels

• Hence, if 𝑋 ≥ log Τ3 2
(𝑛), then 𝐾𝑡+1 = 1

• We thus need that for any const. 𝑐 > 0 and some 𝑡 = 𝑂 log 𝑛 ,

ℙ 𝑋 < log ൗ3 2
(𝑛) ≤

1

𝑛𝑐

𝑋 ≔

𝑖

𝑡

𝑋𝑖

Algorithm Theory Fabian Kuhn 11

Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a non-
pivot, 𝑥 is compared to a pivot at most 𝑂 log 𝑛 times.

Proof:

• 𝜇 ≔ 𝔼 𝑋 = Τ1 3 ⋅ 𝑡, for 𝑐 > 0 and some 𝑡 = 𝑂 log 𝑛 , we need

ℙ 𝑋 < log ൗ3 2
(𝑛) ≤

1

𝑛𝑐

• Chernoff:

• We need 𝜇 ≥ 2 ⋅ log Τ3 2
(𝑛) such that Τ𝜇 2 ≥ log Τ3 2

𝑛

• We need 𝜇 ≥ 8𝑐 ⋅ ln 𝑛 such that 𝑒− Τ𝜇 8 ≤ 𝑛−𝑐

• We can therefore choose 𝑡 = 3 ⋅ 𝜇 = 𝑂 log 𝑛 .

ℙ 𝑋 < 1 − 𝛿 𝜇 ≤ 𝑒−
𝛿2

2 ⋅𝜇 ⟹ ℙ 𝑋 < ൗ
𝜇
2 ≤ 𝑒−

𝜇
8

Algorithm Theory Fabian Kuhn 12

Number of Comparisons

Theorem: With high probability, the total number of comparisons is
at most 𝑶 𝒏 𝐥𝐨𝐠𝒏 .

Proof:

• For every const. 𝑐 > 0, there exists const. 𝛼 > 0, s.t. for every
element 𝑥, the number of comparisons for element 𝑥 as a non-
pivot is ≤ 𝛼 ln 𝑛 with probability at least 1 − Τ1 𝑛𝑐.

• Define event ℰ𝑥 ≔ #comparisons for 𝑥 as non−pivot > 𝛼 ln 𝑛
– ℙ ℰ𝑥 ≤ 𝑛−𝑐

• Union bound over all events ℰ𝑥:

ℙ ራ

𝑥=1

𝑛

ℰ𝑥 ≤

𝑥=1

𝑛

ℙ ℰ𝑥 ≤ 𝑛 ⋅
1

𝑛𝑐
=

1

𝑛𝑐−1

Algorithm Theory Fabian Kuhn 13

Relation to Random Binary Search Trees

Consider Recursion Tree: Label each subarray of size > 1 by the pivot
and each subarray of size = 1 by the element in it.

• We get a binary search tree (BST) on the 𝑛 elements
– Corresponds to the BST with a random insertion order

• #comparisons of element 𝑥 as non-pivot = depth of 𝑥 in tree
– Our analysis shows that the height of a random BST is 𝑂 log𝑛 , w.h.p.

• #comp. of rand. quicksort = 𝑛 ⋅ average depth in a random BST

[7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11]

[3 , 1 , 4 , 6 , 5 , 2] [10 , 14 , 8 , 12 , 9 , 15 , 13 , 11]

[3 , 1 , 4 , 2] [6] [10 , 8 , 9 , 11] [14 , 15 , 13]

[1] [3 , 4] [8 , 9] [11] [13 , 14]

[3] [9] [14]

Algorithm Theory Fabian Kuhn 14

Types of Randomized Algorithms

Las Vegas Algorithm:

• always a correct solution

• running time is a random variable

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

• probabilistic correctness guarantee (mostly correct)

• fixed (deterministic) running time

• Example: primality test

