$11 F$

 Algorithm Theory

 Algorithm Theory}

Chapter 7

Randomized Algorithms

Part IV:

Rand. Quicksort : High Probability Bound

Fabian Kuhn

Quicksort: High Probability Bound

- We have seen that the number of comparisons of randomized quicksort is $O(n \log n)$ in expectation.
- Can we also show that the number of comparisons is $O(n \log n)$ with high probability?
- Recall:

On each recursion level, each pivot is compared once with each other element that is still in the same "part"

Counting Number of Comparisons

- We looked at 2 ways to count the number of comparisons
- recursive characterization of the expected number
- number of different pairs of values that are compared

Let's consider yet another way:

- Each comparison is between a pivot and a non-pivot
- How many times is a specific array element x compared as a non-pivot?

Element x is compared as a non-pivot to a pivot once in every recursion level until one of the following two conditions apply:

1. x is chosen as a pivot
2. x is alone

Successful Recursion Level

- Consider a specific recursion level ℓ
- Where the first recursion level is level 1

Define \boldsymbol{K}_{ℓ} as follows:

- If x is contained in a subarray on recursion level ℓ, then K_{ℓ} is defined as the length of the subarray containing x on level ℓ.
- We therefore have $K_{1}=n$ and $K_{\ell+1} \leq K_{\ell}$ for all $\ell \geq 1$
- If x has been chosen as a pivot before level ℓ, we set $K_{\ell}:=1$ \#comparisons of x as non-pivot \leq \#levels ℓ for which $K_{\ell}>1$

Definition: We say that recursion level ℓ is successful for element x iff the following is true:

$$
K_{\ell+1}=1 \quad \text { or } \quad K_{\ell+1} \leq \frac{2}{3} \cdot K_{\ell}
$$

Successful Recursion Level

Lemma: For every recursion level ℓ and every array element x, it holds that level ℓ is successful for x with probability at least $1 / 3$, independently of what happens in other recursion levels.

Proof:

- Assume that $K_{\ell}>1$, otherwise level ℓ is trivially successful

$$
\geq\left\lfloor K_{\ell} / 3\right\rfloor \quad=\left\lceil K_{\ell} / 3\right\rceil \quad \geq\left\lfloor K_{\ell} / 3\right\rfloor
$$

- If pivot is in the middle part, both remaining parts have size

$$
\leq K_{\ell}-\left\lfloor K_{\ell} / 3\right\rfloor-1 \leq 2 / 3 \cdot K_{\ell}
$$

- In this case, level ℓ is successful
- The probability that the pivot in in the middle part is $\geq 1 / 3$.

Number of Successful Recursion Levels

Lemma: If among the first ℓ recursion levels, at least $\log _{3 / 2}(n)$ are successful for element x, we have $K_{\ell+1}=1$.

Proof:

- We know that

$$
K_{1}=n, \quad \forall i \geq 1: K_{i+1} \leq K_{i}
$$

- If level i is successful, then $K_{i+1} \leq{ }^{2} / 3 \cdot K_{i}$ or $K_{i+1}=1$
- If s among the first ℓ levels are successful, then

$$
K_{\ell+1} \leq \max \left\{1, n \cdot(2 / 3)^{s}\right\}
$$

- If $s \geq \log _{3 / 2}(n)$, then $K_{\ell+1} \leq 1$.

Chernoff Bounds

- Let X_{1}, \ldots, X_{n} be independent 0-1 random variables and define $p_{i}:=\mathbb{P}\left(X_{i}=1\right)$.
- Consider the random variable $X=\sum_{i=1}^{n} X_{i}$
- We have $\mu:=\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} p_{i}$

If $p_{i}=p$ for all i :
$X \sim \operatorname{Bin}(n, p)$

Chernoff Bound (Lower Tail):

$$
\forall \delta>0: \mathbb{P}(X<(1-\delta) \mu)<e^{-\delta^{2} \mu / 2}
$$

Chernoff Bound (Upper Tail):

$$
\begin{array}{r}
\forall \delta>0: \mathbb{P}(X>(1+\delta) \mu)<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \underset{\uparrow}{<} e^{-\delta^{2} \mu / 3} \\
\text { holds for } \delta \leq 1
\end{array}
$$

Chernoff Bounds, Example

Assume that a fair coin is flipped n times. What is the probability to have

1. less than $n / 3$ heads?

$$
p_{i}=p=\frac{1}{2}, \quad \mu:=\mathbb{E}[X]=n p=\frac{n}{2}
$$

$$
\mathbb{P}\left(X<\frac{n}{3}\right)=\mathbb{P}\left(X<\left(1-\frac{1}{3}\right) \cdot \frac{n}{2}\right)<e^{-\frac{1}{2} \cdot \frac{1}{3^{2}} \cdot \frac{n}{2}}=e^{-n / 36}
$$

$$
\mathbb{P}(X<(1-\delta) \mu)<e^{-\frac{\delta^{2}}{2} \mu}
$$

2. more than $0.51 n$ tails?

$$
\mathbb{P}\left(X<(1+0.02) \cdot \frac{n}{2}\right)<e^{-\frac{0.02^{2}}{3} \cdot \frac{n}{2}} \approx e^{-0.0000667 n}
$$

$$
\mathbb{P}(X>(1+\delta) \mu)<e^{-\frac{\delta^{2}}{3} \mu}
$$

3. less than $n / 2-\sqrt{c \cdot n \ln n}$ tails?

$$
\mathbb{P}\left(X<\left(1-\frac{2 \sqrt{c \cdot n \ln n}}{n}\right) \cdot \frac{n}{2}\right)<e^{-\frac{4 c \cdot n \ln n}{2 n^{2}} \cdot \frac{n}{2}}=e^{-c \cdot \ln n}=\frac{1}{n^{c}}
$$

With high probability, \#heads/tails $=\frac{n}{2} \pm O(\sqrt{n \log n})$

Number of Comparisons for x

Lemma: For every array element x, with high probability, as a nonpivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- Consider some level $i \geq 1$, and let if level i not successful

$$
q_{i}:=\mathbb{P}(\text { level } i \text { successful for } x \mid \text { history up to level } i)
$$

- Previous lemma $\Rightarrow q_{i} \geq 1 / 3$
- Define random variable

$$
X_{i}:= \begin{cases}0 & \text { if level } i \text { not successful for } x \\ 1 & \text { with probability } \frac{1 / 3}{q_{i}} \text { if level } i \text { successful for } x\end{cases}
$$

- Then, $\mathbb{P}\left(X_{i}=1\right)=1 / 3$ and X_{i} are independent for different i

Number of Comparisons for x

Lemma: For every array element x, with high probability, as a nonpivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- X_{i} independent, $\mathbb{P}\left(X_{i}=1\right)=1 / 3, X_{i}=1 \Longrightarrow$ level i successful
- Consider the first t levels and define $X:=\sum_{i}^{t} X_{i}$
$-\mathbb{E}[X]=1 / 3 \cdot t$
- $X \leq$ successful levels for x among first t levels
- Hence, if $X \geq \log _{3 / 2}(n)$, then $K_{t+1}=1$
- We thus need that for any const. $c>0$ and some $t=O(\log n)$,

$$
\mathbb{P}\left(X<\log _{3 / 2}(n)\right) \leq \frac{1}{n^{c}}
$$

Number of Comparisons for x

Lemma: For every array element x, with high probability, as a nonpivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- $\mu:=\mathbb{E}[X]=1 / 3 \cdot t$, for $c>0$ and some $t=O(\log n)$, we need

$$
\mathbb{P}\left(X<\log _{3 / 2}(n)\right) \leq \frac{1}{n^{c}}
$$

- Chernoff: $\mathbb{P}(X<(1-\delta) \mu) \leq e^{-\frac{\delta^{2}}{2} \cdot \mu} \Rightarrow \mathbb{P}(X<\mu / 2) \leq e^{-\frac{\mu}{8}}$
- We need $\mu \geq 2 \cdot \log _{3 / 2}(n)$ such that $\mu / 2 \geq \log _{3 / 2}(n)$
- We need $\mu \geq 8 c \cdot \ln n$ such that $e^{-\mu / 8} \leq n^{-c}$
- We can therefore choose $t=3 \cdot \mu=O(\log n)$.

Number of Comparisons

Theorem: With high probability, the total number of comparisons is at most $O(n \log n)$.

Proof:

- For every const. $c>0$, there exists const. $\alpha>0$, s.t. for every element x, the number of comparisons for element x as a nonpivot is $\leq \alpha \ln n$ with probability at least $1-1 / n^{c}$.
- Define event $\varepsilon_{x}:=\{\#$ comparisons for x as non-pivot $>\alpha \ln n\}$

$$
-\mathbb{P}\left(\varepsilon_{x}\right) \leq n^{-c}
$$

- Union bound over all events ε_{x} :

$$
\mathbb{P}\left(\bigcup_{x=1}^{n} \varepsilon_{x}\right) \leq \sum_{x=1}^{n} \mathbb{P}\left(\varepsilon_{x}\right) \leq n \cdot \frac{1}{n^{c}}=\frac{1}{n^{c-1}}
$$

Relation to Random Binary Search Trees

Consider Recursion Tree: Label each subarray of size >1 by the pivot and each subarray of size $=1$ by the element in it.

- We get a binary search tree (BST) on the n elements
- Corresponds to the BST with a random insertion order
- \#comparisons of element x as non-pivot $=\operatorname{depth}$ of x in tree
- Our analysis shows that the height of a random BST is $O(\log n)$, w.h.p.
- \#comp. of rand. quicksort $=n \cdot$ average depth in a random BST

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test

