

Algorithm Theory

Chapter 7 Randomized Algorithms Part IV: Rand. Quicksort : High Probability Bound

Quicksort: High Probability Bound

- We have seen that the number of comparisons of randomized quicksort is $O(n \log n)$ in expectation.
- Can we also show that the number of comparisons is O(n log n) with high probability?

• Recall:

On each recursion level, each pivot is compared once with each other element that is still in the same "part"

Counting Number of Comparisons

- UNI FREIBURG
- We looked at 2 ways to count the number of comparisons
 - recursive characterization of the expected number
 - number of different pairs of values that are compared

Let's consider yet another way:

- Each comparison is between a pivot and a non-pivot
- How many times is a specific array element x compared as a non-pivot?

Element x is compared as a non-pivot to a pivot once in every recursion level until one of the following two conditions apply:

- 1. *x* is chosen as a pivot
- 2. *x* is alone

Successful Recursion Level

FREIBURG

- Consider a specific recursion level ℓ
 - Where the first recursion level is level 1

Define K_{ℓ} as follows:

• If x is contained in a subarray on recursion level ℓ , then K_{ℓ} is defined as the length of the subarray containing x on level ℓ .

- We therefore have $K_1 = n$ and $K_{\ell+1} \leq K_{\ell}$ for all $\ell \geq 1$

• If x has been chosen as a pivot before level ℓ , we set $K_{\ell} \coloneqq 1$

#comparisons of x as non-pivot \leq #levels ℓ for which $K_{\ell} > 1$

Definition: We say that recursion level ℓ is successful for element x iff the following is true:

$$K_{\ell+1} = 1$$
 or $K_{\ell+1} \le \frac{2}{3} \cdot K_{\ell}$

Algorithm Theory

Successful Recursion Level

UN FREIBURG

Lemma: For every recursion level ℓ and every array element x, it holds that level ℓ is successful for x with probability at least 1/3, independently of what happens in other recursion levels.

Proof:

• Assume that $K_{\ell} > 1$, otherwise level ℓ is trivially successful

$$\geq \left\lfloor \frac{K_{\ell}}{3} \right\rfloor \qquad = \left\lfloor \frac{K_{\ell}}{3} \right\rfloor \qquad \geq \left\lfloor \frac{K_{\ell}}{3} \right\rfloor$$

• If pivot is in the middle part, both remaining parts have size $\leq K_{\ell} - \lfloor \frac{K_{\ell}}{3} \rfloor - 1 \leq \frac{2}{3} \cdot K_{\ell}.$

− In this case, level ℓ is successful

• The probability that the pivot in in the middle part is $\geq 1/3$.

Number of Successful Recursion Levels

Lemma: If among the first ℓ recursion levels, at least $\log_{3/2}(n)$ are successful for element x, we have $K_{\ell+1} = 1$.

Proof:

• We know that

$$K_1 = n, \qquad \forall i \ge 1 : K_{i+1} \le K_i$$

- If level *i* is successful, then $K_{i+1} \leq \frac{2}{3} \cdot K_i$ or $K_{i+1} = 1$
- If s among the first ℓ levels are successful, then

$$K_{\ell+1} \le \max\left\{1, n \cdot \left(\frac{2}{3}\right)^{3}\right\}$$

• If $s \ge \log_{3/2}(n)$, then $K_{\ell+1} \le 1$.

Chernoff Bounds

- Let $X_1, ..., X_n$ be independent 0-1 random variables and define $p_i \coloneqq \mathbb{P}(X_i = 1)$.
- Consider the random variable $X = \sum_{i=1}^{n} X_i$
- We have $\mu \coloneqq \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} p_i$
- If $p_i = p$ for all i: $X \sim Bin(n, p)$

Chernoff Bound (Lower Tail):

$$\forall \delta > 0$$
: $\mathbb{P}(X < (1 - \delta)\mu) < e^{-\delta^2 \mu/2}$

Chernoff Bound (Upper Tail):

$$\forall \delta > 0: \ \mathbb{P}(X > (1+\delta)\mu) < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} < \frac{e^{-\delta^{2}\mu/3}}{\uparrow}$$

holds for $\delta \le 1$

Chernoff Bounds, Example

Assume that a fair coin is flipped *n* times. What is the probability to have $p_i = p = \frac{1}{2}, \quad \mu \coloneqq \mathbb{E}[X] = np = \frac{n}{2}$

1. less than n/3 heads? $\mathbb{P}\left(X < \frac{n}{3}\right) = \mathbb{P}\left(X < \left(1 - \frac{1}{3}\right) \cdot \frac{n}{2}\right) < e^{-\frac{1}{2} \cdot \frac{1}{3^2} \cdot \frac{n}{2}} = e^{-n/36}$ $\mathbb{P}(X < (1-\delta)\mu) < e^{-\frac{\delta^2}{2}\mu}$ more than 0.51n tails? 2. $\mathbb{P}\left(X < (1+0.02) \cdot \frac{n}{2}\right) < e^{-\frac{0.02^2}{3} \cdot \frac{n}{2}} \approx e^{-0.0000667n}$ $\mathbb{P}(X > (1+\delta)\mu) < e^{-\frac{\delta^2}{3}\mu}$ 3. less than $n/2 - \sqrt{c \cdot n \ln n}$ tails? $\mathbb{P}\left(X < \left(1 - \frac{2\sqrt{c} \cdot n \ln n}{n}\right) \cdot \frac{n}{2}\right) < e^{-\frac{4c \cdot n \ln n \cdot n}{2n^2} \cdot \frac{n}{2}} = e^{-c \cdot \ln n} = \frac{1}{n^c}$

With high probability, #heads/tails = $\frac{n}{2} \pm O(\sqrt{n \log n})$

Number of Comparisons for *x*

Lemma: For every array element x, with high probability, as a nonpivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- Consider some level $i \ge 1$, and let if level i not successful $q_i \coloneqq \mathbb{P}(\text{level } i \text{ successful for } x \mid \text{history up to level } i)$
- Previous lemma $\Rightarrow q_i \ge 1/_3$
- Define random variable

$$X_i \coloneqq \begin{cases} 0 & \text{if level } i \text{ not successful for } x \\ 1 & \text{with probability } \frac{1/3}{q_i} \text{ if level } i \text{ successful for } x \end{cases}$$

• Then, $\mathbb{P}(X_i = 1) = \frac{1}{3}$ and X_i are independent for different *i*

Number of Comparisons for *x*

Lemma: For every array element x, with high probability, as a nonpivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- X_i independent, $\mathbb{P}(X_i = 1) = \frac{1}{3}, X_i = 1 \implies \text{level } i \text{ successful}$
- Consider the first *t* levels and define $X \coloneqq \sum_{i} X_{i}$ - $\mathbb{E}[X] = \frac{1}{3} \cdot t$
 - $-X \leq$ successful levels for x among first t levels
- Hence, if $X \ge \log_{3/2}(n)$, then $K_{t+1} = 1$
- We thus need that for any const. c > 0 and some $t = O(\log n)$,

$$\mathbb{P}\left(X < \log_{3/2}(n)\right) \leq \frac{1}{n^c}$$

Number of Comparisons for *x*

Lemma: For every array element x, with high probability, as a nonpivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- $\mu \coloneqq \mathbb{E}[X] = \frac{1}{3} \cdot t$, for c > 0 and some $t = O(\log n)$, we need $\mathbb{P}\left(X < \log_{3/2}(n)\right) \le \frac{1}{n^{c}}$
- Chernoff: $\mathbb{P}(X < (1 \delta)\mu) \le e^{-\frac{\delta^2}{2} \cdot \mu} \implies \mathbb{P}(X < \frac{\mu}{2}) \le e^{-\frac{\mu}{8}}$
- We need $\mu \ge 2 \cdot \log_{3/2}(n)$ such that $^{\mu}/_2 \ge \log_{3/2}(n)$
- We need $\mu \ge 8c \cdot \ln n$ such that $e^{-\mu/8} \le n^{-c}$
- We can therefore choose $t = 3 \cdot \mu = O(\log n)$.

Algorithm Theory

Number of Comparisons

Theorem: With high probability, the total number of comparisons is at most $O(n \log n)$.

Proof:

- For every const. c > 0, there exists const. $\alpha > 0$, s.t. for every element x, the number of comparisons for element x as a non-pivot is $\leq \alpha \ln n$ with probability at least $1 \frac{1}{n^c}$.
- Define event *E_x* := {#comparisons for *x* as non-pivot > α ln n}
 − ℙ(*E_x*) ≤ n^{-c}
- Union bound over all events \mathcal{E}_{χ} :

$$\mathbb{P}\left(\bigcup_{x=1}^{n} \mathcal{E}_{x}\right) \leq \sum_{x=1}^{n} \mathbb{P}(\mathcal{E}_{x}) \leq n \cdot \frac{1}{n^{c}} = \frac{1}{n^{c-1}}$$

Relation to Random Binary Search Trees

Consider Recursion Tree: Label each subarray of size > 1 by the pivot and each subarray of size = 1 by the element in it.

- We get a binary search tree (BST) on the *n* elements
 - Corresponds to the BST with a random insertion order
- #comparisons of element x as non-pivot = depth of x in tree
 - Our analysis shows that the height of a random BST is $O(\log n)$, w.h.p.
- #comp. of rand. quicksort = $n \cdot average depth in a random BST$

Algorithm Theory

Types of Randomized Algorithms

UNI FREIBURG

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- **Example:** randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- **Example:** primality test