$11 F$

 Algorithm Theory

 Algorithm Theory}

Chapter 7 Randomized Algorithms

Part V:

Basic Randomized Minimum Cut Algorithm

Fabian Kuhn

Minimum Cut

Reminder: Given a graph $G=(V, E)$, a cut is a partition (A, B) of V such that $V=A \cup B, A \cap B=\emptyset, A, B \neq \emptyset$

Size of the cut $(\boldsymbol{A}, \boldsymbol{B})$: \# of edges crossing the cut

- For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s - t-cut for all $t \neq s$
- $O(m \cdot \lambda(G))=O(m n)$ per s - t cut
- Gives an $O(m n \lambda(G))=O\left(m n^{2}\right)$-algorithm

Edge Contractions

- In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{\boldsymbol{u}, \boldsymbol{v}\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, w represents nodes $S_{w} \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $\left(S_{w}, V \backslash S_{w}\right)$

Randomized Contraction Algorithm

Algorithm:

while there are >2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes
(cut defined by the original node sets represented by the last 2 nodes)
Theorem: The random contraction algorithm returns a minimum cut with probability at least $1 / O\left(n^{2}\right)$.

- We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O\left(n^{2}\right)$.

- There are $n-2$ contractions, each can be done in time $O(n)$.
- We will see this later.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Any edge $\{x, y\}$ in the contracted graph corresponds to some edge in the original graph between two nodes u^{\prime} and v^{\prime} in the sets S_{x} and S_{y} represented by x and y.
- Contracting $\{x, y\}$ merges the node sets S_{x} and S_{y} represented by x and y and does not change any of the other node sets.
- The claim then follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
- For a node u of the contracted graph, let S_{u} be the set of original nodes that have been merged into u (the nodes that u represents)
- Consider a cut (A, B) of the contracted graph
- $\left(A^{\prime}, B^{\prime}\right)$ with

$$
A^{\prime}:=\bigcup_{u \in A} S_{u}, \quad B^{\prime}:=\bigcup_{v \in B} S_{v}
$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut $\left(A^{\prime}, B^{\prime}\right)$.

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in B$ is merged into the same node and the algorithm outputs a cut different from (A, B).
2. If no edge of (A, B) is contracted, no two nodes $u \in A, v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least $2 / n(n-1)=1 /\binom{n}{2}$.

To prove the theorem, we need the following claim:
Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

Proof:

- Min cut has size $k \Longrightarrow$ all nodes have degree $\geq k$
- A node v of degree $<k$ gives a cut $(\{v\}, V \backslash\{v\})$ of size $<k$
- Number of edges $m=1 / 2 \cdot \sum_{v} \operatorname{deg}(v) \geq 1 / 2 \cdot n k$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least $2 / n(n-1)$.

Proof:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction i, there are $n+1-i$ nodes
\rightarrow and thus $\geq(n+1-i) k / 2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{k}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i} .
$$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least $2 / n(n-1)$.

Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most ${ }^{2} / n+1-i$.
- Event ε_{i} : edge contracted in step i is not crossing (A, B)
- Goal: show that $\mathbb{P}\left(\mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{n-2}\right) \geq 2 / n(n-1)$.
$\mathbb{P}($ alg. returns $(A, B))$

$$
=\mathbb{P}\left(\mathcal{E}_{1} \cap \mathcal{E}_{2} \cap \cdots \cap \mathcal{E}_{n-2}\right)
$$

$$
=\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{3} \mid \varepsilon_{1} \cap \varepsilon_{2}\right) \cdots \cdots \mathbb{P}\left(\varepsilon_{n-2} \mid \varepsilon_{1} \cap \varepsilon_{2} \cap \cdots \cap \varepsilon_{n-3}\right)
$$

$$
\mathbb{P}\left(\varepsilon_{i} \mid \varepsilon_{1} \cap \cdots \cap \varepsilon_{i-1}\right) \geq 1-\frac{2}{n+1-i}=\frac{n-i-1}{n-i+1}
$$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
Proof:

- $\mathbb{P}\left(\varepsilon_{i} \mid \mathcal{E}_{1} \cap \cdots \cap \varepsilon_{i-1}\right) \geq 1-\frac{2}{n-i+1}=\frac{n-i-1}{n-i+1}$
- No edge crossing (A, B) contracted: event $\mathcal{E}=\bigcap_{i=1}^{n-2} \mathcal{E}_{i}$

$$
\begin{aligned}
\mathbb{P}(\mathcal{E}) & =\mathbb{P}\left(\varepsilon_{1} \cap \cdots \cap \varepsilon_{n-2}\right) \\
& =\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdots \cdots \mathbb{P}\left(\varepsilon_{n-2} \mid \varepsilon_{1} \cap \cdots \cap \varepsilon_{n-3}\right) \\
& \geq \frac{n<2}{n} \cdot \frac{n<3}{n-1} \cdot \frac{n<4}{n-2} \cdot \frac{n-5}{n-3} \cdot \frac{n-6}{n-4} \cdots \cdots \cdot \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \\
& =\frac{2}{n(n-1)}=\frac{1}{\binom{n}{2}}
\end{aligned}
$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Proof:

- Probability to not get a minimum cut in $c \cdot\binom{n}{2} \cdot \ln n$ iterations:

$$
\begin{gathered}
\left(1-\frac{1}{\binom{n}{2}}\right)^{c \cdot\binom{n}{2} \cdot \ln n} \leq e^{-c \ln n}=\frac{1}{n^{c}} \\
\forall x \in \mathbb{R}:(1+x) \leq e^{x}
\end{gathered}
$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- It remains to show that each instance can be implemented in $O\left(n^{2}\right)$ time.

