IIF

 Algorithm Theory

 Algorithm Theory}

Chapter 7
 Randomized Algorithms

Part VI:

Implementing Edge Contractions

Fabian Kuhn

Implementing Edge Contractions

Edge Contraction:

- Given: multigraph with n nodes
- assume that set of nodes is $\{1, \ldots, n\}$
- Goal: contract edge $\{u, v\}$

Data Structure

- We can use either adjacency lists or an adjacency matrix
- Entry in row i and column j : \#edges between nodes i and j
- Example:

$$
A=\left(\begin{array}{lllll}
0 & 2 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 3 & 0
\end{array}\right)
$$

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting an Edge

Claim: Given the adjacency matrix of an n-node multigraph and an edge $\{u, v\}$, one can contract the edge $\{u, v\}$ in time $O(n)$.

- Row/column of combined node $\{u, v\}$ is sum of rows/columns of u and v
- Row/column of u can be replaced by new row/column of combined node $\{u, v\}$
- Swap row/column of v with last row/column in order to have the new ($n-1$)-node multigraph as a contiguous $(n-1) \times(n-1)$ submatrix

Finding a Random Edge

- We need to contract a uniformly random edge
- How to find a uniformly random edge in a multigraph?
- Finding a random non-zero entry (with the right probability) in an adjacency matrix costs $O\left(n^{2}\right)$.

Idea for more efficient algorithm:

- First choose a random node u
- with probability proportional to the degree (\#edges) of u
- Pick a random edge of u
- only need to look at one row \rightarrow time $O(n)$

Choose a Random Array Entry

Problem: Given an array $A=\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i} \geq 0$, choose a random index i with probability proportional to a_{i}. (assume that $S:=\sum_{i=1}^{n} a_{i}$)

Choose a random array entry:
sum $=0$;
for $i=1, \ldots, n$:
with probability $\frac{a_{i}}{s-\text { sum }}$:
running time $O(n)$

Probability for Picking Index \boldsymbol{i} :
$\mathbb{P}($ index $i)=\left(1-\frac{a_{1}}{S}\right) \cdot\left(1-\frac{a_{2}}{S-a_{1}}\right) \cdots\left(1-\frac{a_{i-1}}{S-\sum_{j=1}^{i-2} a_{j}}\right) \cdot \frac{a_{i}}{S-\sum_{j=1}^{i-1} a_{j}}$
$=\frac{S-a_{1}}{S} \cdot \frac{S-a_{1}-a_{2}}{S-a_{1}} \cdots \cdots \frac{S-\sum_{j=1}^{i-1} a_{j}}{\underline{S-\sum_{j=1}^{i-2} a_{j}}} \cdot \frac{a_{i}}{S-\sum_{j=1}^{i-1} a_{j}}=\frac{a_{i}}{S}$

Choose a Random Node

Edge Sampling:

1. Choose a node $u \in V$ with probability

$$
\frac{\operatorname{deg}(u)}{\sum_{v \in V} \operatorname{deg}(v)}=\frac{\operatorname{deg}(u)}{2 m}
$$

- \quad Need to keep track of node degrees and number of edges m
- Can at no extra cost (asymptotically) when doing edge contractions

2. Choose a uniformly random edge of u

Probability for getting edge \boldsymbol{e} between \boldsymbol{u} and \boldsymbol{v} :

$$
\mathbb{P}(\text { edge } e)=\frac{\operatorname{deg}(u)}{2 m} \cdot \frac{1}{\operatorname{deg}(u)}+\frac{\operatorname{deg}(v)}{2 m} \cdot \frac{1}{\operatorname{deg}(v)}=\frac{1}{m}
$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- One instance consists of $n-2$ edge contractions
- Each edge contraction can be carried out in time $O(n)$
- Actually: O (current \#nodes)
- Time per instance of the contraction algorithm: $O\left(n^{2}\right)$

