$11 F$

 Algorithm Theory

 Algorithm Theory}

Chapter 7 Randomized Algorithms

Part VII:

Fast Randomized Minimum Cut Algorithm

Fabian Kuhn

A Better Randomized Minimum Cut Alg.?

We saw: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one can find a minimum cut in time $O\left(n^{4} \log n\right)$, w.h.p.

- Time $O\left(n^{4} \log n\right)$ is not very spectacular, a simple max flow based implementation has time $O\left(n^{4}\right)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

1. The algorithm can be improved to beat every known deterministic algorithm.
2. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$
- Before contraction i, there are $n+1-i$ nodes and thus at least $(n+1-i) k / 2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{k}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i} .
$$

Improving the Contraction Algorithm

- For a specific min cut (A, B), if (A, B) survives the first $i-1$ contractions,

$$
\mathbb{P}(\text { edge crossing }(A, B) \text { in contraction } i) \leq \frac{2}{n-i+1}
$$

Observation: The probability only gets large for large i

- Idea: The early steps are much safer than the late steps. Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n-\lceil n / \sqrt{2}+1\rceil$ contractions, with probability > $1 / 2$.

Proof:

- Event \mathcal{E}_{i} : cut (A, B) survives contraction i
- Probability that (A, B) survives the first $n-t$ contractions:

$$
\begin{aligned}
\mathbb{P}\left(\bigcap_{i=1}^{n-t} \varepsilon_{i}\right) & =\prod_{i=1}^{n-t} \mathbb{P}\left(\varepsilon_{i} \mid \varepsilon_{1} \cap \cdots \cap \varepsilon_{i-1}\right) \geq \prod_{i=1}^{n-t}\left(1-\frac{2}{n-i+1}\right)=\prod_{i=1}^{n-t} \frac{n-i-1}{n-i+1} \\
& =\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \cdots \cdot \frac{t+1}{t+3} \cdot \frac{t}{t+2} \cdot \frac{t-1}{t+1}=\frac{t(t-1)}{n(n-1)}
\end{aligned}
$$

$t=\left\lceil\frac{n}{\sqrt{2}}+1\right\rceil>\frac{n}{\sqrt{2}}+1$ $\mathbb{P}\left(\bigcap_{i=1}^{n-t} \mathcal{E}_{i}\right)>\frac{\left(\frac{n}{\sqrt{2}}+1\right) \cdot \frac{n}{\sqrt{2}}}{n \cdot(n-1)}>\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2}$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n / \sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n-n / \sqrt{2}$ contractions with probability $\geq 1 / 2$.

contract $(\boldsymbol{G}, \boldsymbol{t})$:

- Starting with n-node graph G, perform $n-t$ edge contractions such that the new graph has t nodes.

mincut(G):

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Success Probability

Preserves min cut with prob. $\geq 1 / 2$

mincut(G):

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;
$\boldsymbol{P}(\boldsymbol{n})$: probability that the above algorithm returns a min cut when applied to a graph with n nodes.

- Probability that X_{1} is a \min cut $\geq \frac{1}{2} \cdot P\left(\frac{n}{\sqrt{2}}\right)$

Recursion:

$$
P(n) \geq 1-\left(1-\frac{1}{2} \cdot P\left(\frac{n}{\sqrt{2}}\right)\right)^{2}=P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2)=1
$$

Success Probability

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1 / \log _{2} n$.

Proof (by induction on n):

$$
P(n) \geq \frac{1}{\log _{2} n}
$$

$$
P(n)=P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2)=1
$$

Base case: $P(2) \geq \frac{1}{\log _{2} 2}=1$
$\quad(n=2)$

induction hypothesis

$\begin{aligned} \underset{(n>2)}{\text { Ind. step: } P(n)} & \geq P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2} \geq \frac{1}{\log _{2}(n / \sqrt{2})}-\frac{1}{4 \cdot \log _{2}(n / \sqrt{2})^{2}} \\ & =\frac{1}{\log _{2} n-\frac{1}{2}} \cdot\left(1-\frac{1}{4 \log _{2} n-2}\right)=\frac{4 \log _{2} n-3}{4 \log _{2}^{2} n-(\underbrace{>\log _{2} n}_{\left.>3 \log _{2} n-1\right)}} \\ & >\frac{4 \log _{2} n-3}{4 \log _{2}^{2} n-3 \log _{2} n}=\frac{1}{\log _{2} n}\end{aligned}$

Running Time

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Recurrence Relation:

- $T(n)$: time to apply algorithm to n-node graphs
- Recursive calls: $2 T(n / \sqrt{2})$
- Number of contractions to get to $n / \sqrt{2}$ nodes: $O(n)$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}\right)+O\left(n^{2}\right), \quad T(2)=O(1)
$$

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O\left(n^{2} \log n\right)$.

Proof:

- Can be shown in the usual way, by induction on n
- Or by applying the Master theorem...

Remarks:

- The running time is only by an $O(\log n)$-factor slower than the basic contraction algorithm.
- The success probability is exponentially better!
- For finding a minimum cut with high probability, we now need $O\left(\log ^{2} n\right)$ repetitions and we therefore obtain an overall running time of $O\left(n^{2} \log ^{3} n\right)$.

