IIF

 Algorithm Theory

 Algorithm Theory}

Chapter 7
 Randomized Algorithms

Part VIII:
Cut Counting and Edge Sampling

Fabian Kuhn

Number of Minimum Cuts

- Given a graph G, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity λ, how many ways are there to remove λ edges to disconnect G ?
- Note that the total number of cuts is large:

$$
\# \text { cuts }=\frac{2^{n}-2}{2}=2^{n-1}-1
$$

Number of Minimum Cuts

Example: Ring with n nodes

- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:
- Are there graphs with more min cuts?

Number of Min Cuts

Theorem: The number of minimum cuts of a connected graph is at most $\binom{n}{2}$.

Proof:

- Assume there are s min cuts
- For $i \in\{1, \ldots, s\}$, define event \mathcal{C}_{i} :

$$
\mathcal{C}_{i}:=\{\text { basic contraction algorithm returns min cut } i\}
$$

- We know that for $i \in\{1, \ldots, s\}: \mathbb{P}\left(\mathcal{C}_{i}\right) \geq 1 /\binom{n}{2}$
- Events $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ are disjoint:

$$
\mathbf{1} \geq \mathbb{P}\left(\bigcup_{i=1}^{s} \mathcal{C}_{i}\right)=\sum_{i=1}^{s} \mathbb{P}\left(\mathcal{C}_{i}\right) \geq \frac{s}{\binom{n}{2}}
$$

$$
s \leq\binom{ n}{2}
$$

Counting Larger Cuts

- In the following, assume that min cut has size $\lambda=\lambda(G) \geq 1$
- How many cuts of size $\leq k=\alpha \cdot \lambda$ can a graph have?
- Consider a specific cut (A, B) of size $\leq k$
- As before, during the contraction algorithm:
- min cut size $\geq \lambda$
- total number of edges $\geq \lambda$ • \#nodes/2
- cut (A, B) remains as long as none of its edges gets contracted
- Prob. that (A, B) survives $i^{\text {th }}$ contraction (if it still exists)

$$
=1-\frac{k}{\# \text { edges }} \geq 1-\frac{2 \alpha \lambda}{\lambda \cdot \# \text { nodes }}=1-\frac{2 \alpha}{n-i+1}=\frac{n-2 \alpha-i+1}{n-i+1}
$$

For simplicity, in the following, assume that 2α is an integer

Counting Larger Cuts

Lemma: If $2 \alpha \in \mathbb{N}$, the probability that cut (A, B) of size $\leq \alpha \cdot \lambda$ survives the first $n-2 \alpha$ edge contractions is at least

$$
\frac{(2 \alpha)!}{n(n-1) \cdot \ldots \cdot(n-2 \alpha+1)} \geq \frac{2^{2 \alpha-1}}{n^{2 \alpha}}
$$

Proof:

- As before, event \mathcal{E}_{i} : cut (A, B) survives contraction i

$$
\begin{aligned}
\left(\bigcap_{i=1}^{n-2 \alpha} \mathcal{E}_{i}\right) & =\prod_{i=1}^{n-2 \alpha} \mathbb{P}\left(\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \cdots \cap \mathcal{E}_{i-1}\right) \geq \prod_{i=1}^{n-2 \alpha} \frac{n-2 \alpha-i+1}{n-i+1} \\
& =\frac{n-2 \alpha}{n} \cdot \frac{n-2 \alpha-1}{n-1} \cdot \frac{n-2 \alpha-2}{n-2} \cdots \cdots \frac{2}{2 \alpha+2} \cdot \frac{1}{2 \alpha+1} \\
& =\frac{2 \alpha \cdot(2 \alpha-1) \cdots \cdot 1}{n \cdot(n-1) \cdots \cdot(n-2 \alpha+1)} \geq \frac{(2 \alpha)!}{n^{2 \alpha}} \geq \frac{2^{2 \alpha-1}}{n^{2 \alpha}}
\end{aligned}
$$

Number of Cuts

Theorem: If $2 \alpha \in \mathbb{N}$, the number of edge cuts of size at most $\alpha \cdot \lambda(G)$ of a connected n-node graph G is at most $n^{2 \alpha}$.

Proof:

$\mathbb{P}($ cut of size $\leq \alpha \cdot \lambda$ survives first $n-2 \alpha$ contractions $) \geq \frac{2^{2 \alpha-1}}{n^{2 \alpha}}$ afterwards: 2α nodes

2α nodes $<2^{2 \alpha-1}$ cuts \Rightarrow return random remaining cut

We get a randomized algorithm that returns any specific cut (A, B) of size $\leq \alpha \cdot \lambda$ with probability at least $1 / n^{2 \alpha}$.
\Rightarrow Now the argument is the same as for cuts of size λ.
Remark: The bound also holds in general, even if $2 \alpha \notin \mathbb{N}$.

Resilience To Edge Failures

- Consider a network (a graph) G with n nodes and edge connectivity λ
- Assume that each link (edge) of G fails independently with probability p
- How large can p be such that the remaining graph is still connected with high probability or with probability $1-\varepsilon$?

Maintaining Connectivity

Claim: A graph $G=(V, E)$ is connected if and only if every cut (A, B) has size at least 1 .

Proof:

- If there is a cut (A, B) of size 0 , there are no edges between the nodes in A and B and G is therefore not connected.
- Now, assume that G is not connected
- G consists of at least 2 different connected components
- Let A be the set of nodes of one connected component $\Rightarrow(A, V \backslash A)$ is a cut of size 0

For G to remain connected, we need to make sure that ≥ 1 edge of every cut remains.

Resilience to Edge Failures

- Consider an edge cut (A, B) of size $k=\alpha \cdot \lambda(G)$
- Assume that each edge fails with probability $p \leq 1-\frac{c \cdot \ln n}{\lambda(G)}$
- Hence each edge survives with probability $q \geq \frac{c \cdot \ln n}{\lambda(G)}$
- Probability that no edge crossing (A, B) survives

$$
\begin{aligned}
\mathbb{P}(\text { no edge of }(A, B) \text { survives }) & =p^{k} \leq\left(1-\frac{c \cdot \ln n}{\lambda(G)}\right)^{\alpha \cdot \lambda(G)} \\
& \leq e^{-c \alpha \ln n}=\frac{1}{n^{\alpha \cdot c}} \\
\forall x \in \mathbb{R}: 1+x & \leq e^{x}
\end{aligned}
$$

Maintaining All Cuts of a Certain Size

Claim: If each edge survives with prob. $q \geq \frac{c \cdot \ln n}{\lambda(G)}$, for a given $k=\alpha \lambda(G)$, at least one edge of each cut of size exactly k survives with prob. at least

$$
1-\frac{1}{n^{(c-2) \alpha}}
$$

- Number the cuts of size k from 1 to $s \leq n^{2 \alpha}$
- Event \mathcal{F}_{i} : all edges of $i^{\text {th }}$ cut of size k are removed

From before: $\forall i \in\{1, \ldots, s\}: \mathbb{P}\left(\mathcal{F}_{i}\right) \leq \frac{1}{n^{\alpha c}}$

$$
\Rightarrow \mathbb{P}\left(\bigcup_{i=1}^{s} \mathcal{F}_{i}\right) \leq \sum_{i=1}^{s} \mathbb{P}\left(\mathcal{F}_{i}\right) \leq \frac{n^{2 \alpha}}{n^{\alpha c}}=\frac{1}{n^{(c-2) \alpha}}
$$

Maintaining Connectivity

Theorem: If each edge of a (simple) n-node graph G independently fails with probability at most $1-\frac{(c+4) \cdot \ln n}{\lambda(G)}$, the remaining graph is connected with probability at least $1-\frac{1}{n^{c}}$.

Proof:

- $\underbrace{\mathbb{P}(\exists \text { cut of size } k=\alpha \lambda \text { that loses all edges })} \leq \frac{1}{n^{(c+2) \alpha}} \leq \frac{1}{n^{c+2}}$.

$$
=P_{k}
$$

- \#difference cut sizes $<n^{2} \quad\left(\max\right.$. possible cut size $\left.=n^{2} / 4\right)$
- Union bound over all possible k :

$$
\mathbb{P}(\exists \text { cut that loses all edges }) \leq \sum_{k=\lambda}^{n^{2} / 4} P_{k} \leq n^{2} \cdot \frac{1}{n^{c+2}}=\frac{1}{n^{c}}
$$

