# lif Algorithm Theory 

## Chapter 8

# Approximation Algorithms 

Part II:<br>The Metric TSP Problem

Fabian Kuhn

## Metric TSP

## Input:

- Set $V$ of $n$ nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., $d(u, v)$ is dist from $u$ to $v$
- Distances define a metric on $V$ :

$$
\begin{aligned}
& d(u, v)=d(v, u) \geq 0, \quad d(u, v)=0 \Leftrightarrow u=v \\
& \forall u, v, w \in V: d(u, v) \leq d(u, w)+d(w, v)
\end{aligned}
$$

## Solution:

- Ordering/permutation $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)$
- Length of TSP tour: $d\left(v_{1}, v_{n}\right)+\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)$


## Goal:

- Minimize length of TSP path or TSP tour


## Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$-approximation
- Can we get a constant approximation ratio?
- We will see that we can...


## TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

## Proof:

- A TSP path is a spanning tree, it's length is the weight of the tree
$w(\mathrm{MST}) \leq \mathrm{TSP}_{\mathrm{PATH}} \leq \mathrm{TSP}_{\mathrm{TOUR}}$

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.

The MST Tour

Walk around the MST...


The MST Tour
Walk around the MST...
cost (walk) $=2 \cdot w($ MST $)$ cost (tour) $\leq 2 \cdot \boldsymbol{w}$ (MST)

## Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

## Proof:

- Triangle inequality $\rightarrow$ length of tour is at most $2 \cdot$ weight(MST)
- We have seen that weight (MST) < opt. tour length

Can we do even better?

## Metric TSP Subproblems

Claim: Given a metric $(V, d)$ and $\left(V^{\prime}, d\right)$ for $V^{\prime} \subseteq V$, the optimal TSP path/tour of $\left(V^{\prime}, d\right)$ is at most as large as the optimal TSP path/tour of ( $V, d$ ).

Optimal TSP tour of nodes 1, 2, ... 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12
blue tour $\leq$ green tour


## TSP and Matching

- Consider a symmetric TSP instance $(V, d)$ with an even number of nodes $|V|$
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of $V$ is incident to an edge of $M$.
- Because $|V|$ is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of $V$ into $|V| / 2$ pairs is a perfect matching.
- The weight of a matching $M$ is the sum of the distances represented by all edges in $M$ :

$$
w(M)=\sum_{\{u, v\} \in M} d(u, v)
$$

## TSP and Matching

Lemma: Assume we are given a TSP instance ( $V, d$ ) with an even number of nodes. The length of an optimal TSP tour of $(V, d)$ is at least twice the weight of a minimum weight perfect matching of ( $V, d$ ).

## Proof:

- The edges of a TSP tour can be partitioned into 2 perfect matchings



## Minimum Weight Perfect Matching

Claim: If $|V|$ is even, a minimum weight perfect matching of $(V, d)$ can be computed in polynomial time

## Remarks:

- We have seen that a maximum matching of an unweighted graph can be computed in polynomial time.
- With a more complicated algorithm, one can also compute a maximum weight matching of a weighted graph in polynomial time.
- The minimum weight perfect matching problem can easily be reduced to the maximum weighted matching problem.
- Just make sure that the graph is complete (by adding edges of sufficiently large weight) and define new edge weights $w_{e}^{\prime}:=w_{\max }-w_{e}$


## Algorithm Outline

Problem of MST algorithm:

- Every edge has to be visited twice


## Goal:

- Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)


## Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?


## Euler Tour

Theorem: A connected, unweighted (multi-)graph $G$ (no self-loops) has an Euler tour if and only if every node of $G$ has even degree.

## Proof:

- If $G$ has an odd degree node, it clearly cannot have an Euler tour
- If $G$ has only even degree nodes, a tour can be found recursively:

1. Start at some node
2. As long as possible, follow an unvisited edge

- Gives a partial tour, the remaining graph still has even degree

3. Solve problem on remaining components recursively
4. Merge the obtained tours into one tour that visits all edges

## TSP Algorithm

1. Compute MST T
2. $V_{\text {odd }}$ : nodes that have an odd degree in $T$ ( $\left|V_{\text {odd }}\right|$ is even)
3. Compute min weight perfect matching $M$ of $\left(V_{\text {odd }}, d\right)$
4. $(V, T \cup M)$ is a (multi-)graph with even degrees

## TSP Algorithm

5. Compute Euler tour on $(V, T \cup M)$
6. Total length of Euler tour $\leq \frac{3}{2} \cdot \mathbf{T S P}_{\mathbf{O P T}}$
7. Get TSP tour by taking shortcuts wherever the Euler tour visits a node twice

## TSP Algorithm

- The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $3 / 2$.

## Proof:

- The length of the Euler tour is $\leq 3 / 2 \cdot \mathrm{TSP}_{\mathrm{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

