lif Algorithm Theory

Chapter 8

Approximation Algorithms

Part III:
Minimum Set Cover

Fabian Kuhn

Set Cover

Input:

- A set of elements X and a collection \mathcal{S} of subsets X, i.e., $\mathcal{S} \subseteq 2^{X}$
- such that $\mathrm{U}_{S \in S} S=X$

Set Cover:

- A set cover \mathcal{C} of (X, \mathcal{S}) is a subset of the sets \mathcal{S} which covers X :

$$
\bigcup_{S \in \mathcal{C}} S=X
$$

Example:

Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
- i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in \mathcal{S}$ has a weight $w_{S}>0$
- Goal: Find a set cover \mathcal{C} of minimum weight

Example:

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $\mathcal{C}=\varnothing$
- In each step, add set $S \in \mathcal{S} \backslash \mathcal{C}$ to \mathcal{C} s.t. S covers as many uncovered elements as possible

Example:

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

- Start with $\mathcal{C}=\varnothing$
- In each step, add set $S \in \mathcal{S} \backslash \mathcal{C}$ with the best weight per newly covered element ratio (set with best efficiency):

$$
S=\arg \min _{S \in \mathcal{S} \backslash \mathcal{C}} \frac{w_{S}}{\left|S \backslash \cup_{T \in \mathcal{C}} T\right|}
$$

Analysis of Greedy Algorithm:

- Assign a price $p(x)$ to each element $x \in X$:

The efficiency of the set when covering the element

- If covering x with set S, if partial cover is \mathcal{C} before adding S to \mathcal{C} :

$$
p(e)=\frac{w_{S}}{\left|S \backslash \cup_{T \in \mathcal{C}} T\right|}
$$

$$
\begin{aligned}
& \text { At all times: } \\
& \qquad \sum_{x \in X} p(x)=\sum_{S \in \mathcal{C}} w_{S}
\end{aligned}
$$

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathcal{S}$ be a set and assume that the elements are covered in the order $x_{1}, x_{2}, \ldots, x_{k}$ by the greedy algorithm (ties broken arbitrarily).
Then, the price of element x_{i} is at most $p\left(x_{i}\right) \leq \frac{w_{S}}{k-i+1}$

x_{2} $x_{1}: p\left(x_{1}\right) \leq \frac{x_{S}}{k}$
 - Price of $x_{1}: p\left(x_{1}\right) \leq \frac{w_{S}}{k}$

- When x_{1} gets covered, all k elments of S are uncovered
- We therefore take a set with weight per newly covered element $\leq w_{S} / k$
- Price of $x_{2}: p\left(x_{2}\right) \leq \frac{w_{S}}{k-1}$
- When x_{2} gets covered, $\geq k-1$ elements of S are still uncovered
- We therefore take a set with weight per newly cov. elem. $\leq w_{S} /(k-1)$

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathcal{S}$ be a set and assume that the elements are covered in the order $x_{1}, x_{2}, \ldots, x_{k}$ by the greedy algorithm (ties broken arbitrarily).
Then, the price of element x_{i} is at most $p\left(x_{i}\right) \leq \frac{w_{S}}{k-i+1}$

- Price of $x_{i}: p\left(x_{i}\right) \leq \frac{w_{S}}{k-i+1}$
- When x_{i} gets covered, all elements $x_{i}, x_{i+1}, \ldots, x_{k}$ are still uncovered
- We therefore take a set with weight per newly covered element

$$
\leq \frac{w_{S}}{k-(i-1)}=\frac{w_{S}}{k-i+1}
$$

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathcal{S}$ be a set and assume that the elements are covered in the order $x_{1}, x_{2}, \ldots, x_{k}$ by the greedy algorithm (ties broken arbitrarily).
Then, the price of element x_{i} is at most $p\left(x_{i}\right) \leq \frac{w_{S}}{k-i+1}$
Corollary: The total price of a set $S \in \mathcal{S}$ of size $|S|=k$ is

$$
\sum_{x \in S} p(x) \leq w_{S} \cdot H_{k}, \quad \text { where } H_{k}=\sum_{i=1}^{k} \frac{1}{i} \leq 1+\ln k
$$

Proof:

$$
\sum_{x \in S} p(x)=\sum_{i=1}^{k} p\left(x_{i}\right) \leq w_{S} \cdot \sum_{i=1}^{k} \frac{1}{k-i+1}=w_{S} \cdot \sum_{j=1}^{k} \frac{1}{j}
$$

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set $S \in \mathcal{S}$ of size $|S|=k$ is

$$
\sum_{x \in S} p(x) \leq w_{S} \cdot H_{k}
$$

$$
\text { where } H_{k}=\sum_{i=1}^{k} \frac{1}{i} \leq 1+\ln k
$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $\boldsymbol{H}_{K} \leq \mathbf{1}+\ln \boldsymbol{K}$, where s is the cardinality of the largest set ($K=\max _{S \in S}|S|$).

- Consider the greedy solution \mathcal{C} and an optimal solution \mathcal{C}^{*} :

$$
\begin{gathered}
w(\mathcal{C})=\sum_{x \in X} p(x) \leq \sum_{S \in \mathcal{C}^{*}} \sum_{x \in S} p(x) \leq \sum_{S \in \mathcal{C}^{*}} w_{S} \cdot H_{|S|} \leq H_{K} \cdot w\left(\mathcal{C}^{*}\right) \\
\mathcal{C}: \text { greedy solution } \\
w(\mathcal{C}):=\sum_{S \in \mathcal{C}} w_{S}
\end{gathered}
$$

Set Cover Greedy Algorithm

Can we improve this analysis?
No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq(1-o(1)) \cdot \ln s$.

- if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n) . .$.

OPT $=2$
GREEDY $\geq \log _{2} n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...
Can we improve the approximation ratio?
No, unfortunately not, unless $\mathrm{P}=\mathrm{NP}$
Dinur \& Steurer in 2013 showed that unless $P=N P$, minimum set cover cannot be approximated better than by a factor $(1-o(1))$. $\ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
- PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
- Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph $G=(V, E)$ such that

$$
\forall\{\boldsymbol{u}, \boldsymbol{v}\} \in E, \quad\{\boldsymbol{u}, \boldsymbol{v}\} \cap S \neq \varnothing .
$$

Minimum Vertex Cover:

- Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

Vertex Cover vs Matching

Consider a matching M and a vertex cover S
Claim: $|M| \leq|S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Vertex Cover vs Matching

- In the following, assume that S^{*} is an optimal vertex cover

Theorem: If M is a maximal matching, then $S:=\bigcup_{e \in M} e$ is a vertex cover of size $|S| \leq 2 \cdot\left|S^{*}\right|$.

Proof:

- M is maximal: for every edge $\{u, v\} \in E$, either u or v (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size $|S|=2|M|$.

Set Cover: Special Cases

Dominating Set:

Given a graph $G=(V, E)$, a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \backslash S$, there is a neighbor $v \in S$.

- The dominating set problem is as hard as the general set cover problem.
- There is a simple reduction to transform every set cover instance into an equivalent dominating set instance.

Minimum Hitting Set

Given: Set of elements X and collection of subsets $\mathcal{S} \subseteq 2^{X}$

- Sets cover $X: \cup_{S \in \mathcal{S}} S=X$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that

$$
\forall S \in \mathcal{S}: S \cap H \neq \emptyset
$$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

Sets

Elements

