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Set Cover

Input:

• A set of elements 𝑋 and a collection 𝒮 of subsets 𝑋, i.e., 𝒮 ⊆ 2𝑋

– such that ڂ𝑆∈𝒮 𝑆 = 𝑋

Set Cover:

• A set cover 𝒞 of (𝑋, 𝒮) is a subset of the sets 𝒮 which covers 𝑋:

ራ

𝑆∈𝒞

𝑆 = 𝑋

Example: 𝑿
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Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example: 
𝑿
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Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many 
uncovered elements as possible

Example:
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Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per newly 
covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆 to 𝒞:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

At all times:



𝑥∈𝑋

𝑝(𝑥) =

𝑆∈𝒞

𝑤𝑆
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘 by
the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

• Price of 𝑥1 : 𝑝 𝑥1 ≤
𝑤𝑆

𝑘

– When 𝑥1 gets covered, all 𝑘 elments of 𝑆 are uncovered

– We therefore take a set with weight per newly covered element ≤ Τ𝑤𝑆 𝑘

• Price of 𝑥2 : 𝑝 𝑥2 ≤
𝑤𝑆

𝑘−1

– When 𝑥2 gets covered, ≥ 𝑘 − 1 elements of 𝑆 are still uncovered

– We therefore take a set with weight per newly cov. elem. ≤ Τ𝑤𝑆 (𝑘 − 1)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑘𝑥5 ⋯
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘 by
the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

• Price of 𝑥𝑖 : 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

– When 𝑥𝑖 gets covered, all elements 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑘 are still uncovered

– We therefore take a set with weight per newly covered element

≤
𝑤𝑆

𝑘 − 𝑖 − 1
=

𝑤𝑆
𝑘 − 𝑖 + 1

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑘𝑥5 ⋯
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is



𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Proof:



𝑥∈𝑆

𝑝(𝑥) =

𝑖=1

𝑘

𝑝 𝑥𝑖 ≤ 𝑤𝑆 ⋅

𝑖=1

𝑘
1

𝑘 − 𝑖 + 1
= 𝑤𝑆 ⋅

𝑗=1

𝑘
1

𝑗
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Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is



𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum 
(weighted) set cover algorithm is at most 𝑯𝑲 ≤ 𝟏 + 𝐥𝐧𝑲, where 𝑠
is the cardinality of the largest set (𝐾 = max

𝑆∈𝒮
|𝑆|).

• Consider the greedy solution 𝒞 and an optimal solution 𝒞∗:

𝑤 𝒞 = 

𝑥∈𝑋

𝑝 𝑥 ≤ 

𝑆∈𝒞∗



𝑥∈𝑆

𝑝 𝑥 ≤ 

𝑆∈𝒞∗

𝑤𝑆 ⋅ 𝐻 𝑆 ≤ 𝐻𝐾 ⋅ 𝑤 𝒞∗

𝒞 : greedy solution

𝑤 𝒞 ≔

𝑆∈𝒞

𝑤𝑆

𝒞∗ : optimal solution

𝑤 𝒞∗ ≔ 

𝑆∈𝒞∗

𝑤𝑆
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Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the 

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln 𝑠.

• if 𝑠 is the size of the largest set... (𝑠 can be linear in 𝑛)

Let’s show that the approximation ratio is at least Ω log 𝑛 ...

𝐎𝐏𝐓 = 𝟐

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏
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Set Cover: Better Algorithm?

An approximation ratio of ln 𝑛 seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer in 2013 showed that unless P = NP, minimum set 

cover cannot be approximated better than by a factor 1 − 𝑜 1 ⋅

ln 𝑛 in polynomial time.

• Proof is based on the so-called PCP theorem
– PCP theorem is one of the main (relatively) recent advancements in 

theoretical computer science and the major tool to prove approximation 
hardness lower bounds

– Shows that every language in NP has certificates of polynomial length 
that can be checked by a randomized algorithm by only querying a 
constant number of bits (for any constant error probability)
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Set Cover: Special Cases

Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes of a graph 𝐺 = (𝑉, 𝐸) such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

• Each node has a weight

• Find a vertex cover of minimum total weight
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Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof: 

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀
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Vertex Cover vs Matching

• In the following, assume that 𝑆∗ is an optimal vertex cover

Theorem: If 𝑀 is a maximal matching, then 𝑆 ≔ 𝑒∈𝑀ڂ 𝑒 is a vertex 
cover of size 𝑆 ≤ 2 ⋅ |𝑆∗|.

Proof: 

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both) 
are matched 

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex 
cover 𝑆 of size 𝑆 = 2|𝑀|.
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Set Cover: Special Cases

Dominating Set:
Given a graph 𝐺 = 𝑉, 𝐸 , a dominating set 𝑆 ⊆ 𝑉 is a subset of
the nodes 𝑉 of 𝐺 such that for all nodes 𝑢 ∈ 𝑉 ∖ 𝑆, there is a 
neighbor 𝑣 ∈ 𝑆.

• The dominating set problem is as hard as the general set
cover problem.
– There is a simple reduction to transform every set cover instance into

an equivalent dominating set instance.
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Minimum Hitting Set

Given: Set of elements 𝑋 and collection of subsets 𝒮 ⊆ 2𝑋

– Sets cover 𝑋: ڂ𝑆∈𝒮 𝑆 = 𝑋

Goal: Find a min. cardinality subset 𝐻 ⊆ 𝑋 of elements such that

∀𝑆 ∈ 𝒮 ∶ 𝑆 ∩ 𝐻 ≠ ∅

Problem is equivalent to min. set cover with roles of sets and 
elements interchanged

Sets

Elements


