

Algorithm Theory

Chapter 8 Approximation Algorithms

Part III: Minimum Set Cover

Fabian Kuhn

Set Cover

Input:

- A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$
 - such that $\bigcup_{S \in S} S = X$

Set Cover:

• A set cover C of (X, S) is a subset of the sets S which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$

X

Example:

Fabian Kuhn

Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in S$ has a weight $w_S > 0$
- **Goal:** Find a set cover C of minimum weight

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C to C s.t. S covers as many uncovered elements as possible

Example:

Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C with the best weight per newly covered element ratio (set with best efficiency):

$$S = \arg\min_{S \in S \setminus C} \frac{w_S}{\left| S \setminus \bigcup_{T \in C} T \right|}$$

Analysis of Greedy Algorithm:

- Assign a price p(x) to each element x ∈ X:
 The efficiency of the set when covering the element
- If covering x with set S, if partial cover is C before adding S to C:

$$p(e) = \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

At all times:

$$\sum_{x \in X} p(x) = \sum_{S \in \mathcal{C}} w_S$$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

• Price of $x_1 : p(x_1) \le \frac{w_S}{k}$

- When x_1 gets covered, all k elments of S are uncovered

- We therefore take a set with weight per newly covered element $\leq w_S/k$
- Price of $x_2: p(x_2) \le \frac{w_S}{k-1}$
 - When x_2 gets covered, $\ge k 1$ elements of S are still uncovered
 - We therefore take a set with weight per newly cov. elem. $\leq w_S/(k-1)$

Algorithm Theory

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

• Price of $x_i : p(x_i) \le \frac{w_S}{k-i+1}$

- When x_i gets covered, all elements x_i, x_{i+1}, \dots, x_k are still uncovered

- We therefore take a set with weight per newly covered element

$$\leq \frac{w_S}{k - (i - 1)} = \frac{w_S}{k - i + 1}$$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Corollary: The total price of a set $S \in S$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^n \frac{1}{i} \le 1 + \ln k$$

Proof:

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_K \leq 1 + \ln K$, where s is the cardinality of the largest set ($K = \max_{S \in S} |S|$).

• Consider the greedy solution \mathcal{C} and an optimal solution \mathcal{C}^* :

$$w(\mathcal{C}) = \sum_{x \in X} p(x) \le \sum_{S \in \mathcal{C}^*} \sum_{x \in S} p(x) \le \sum_{S \in \mathcal{C}^*} w_S \cdot H_{|S|} \le H_K \cdot w(\mathcal{C}^*)$$

C: greedy solution
$$w(\mathcal{C}) \coloneqq \sum_{S \in \mathcal{C}} w_S$$

$$w(\mathcal{C}^*) \coloneqq \sum_{S \in \mathcal{C}^*} w_S$$

Algorithm Theory

Fabian Kuhn

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•

OPT = 2 $GREEDY \ge \log_2 n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer in 2013 showed that unless P = NP, minimum set cover cannot be approximated better than by a factor $(1 - o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph G = (V, E) such that $\forall \{u, v\} \in E, \quad \{u, v\} \cap S \neq \emptyset.$

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

Vertex Cover vs Matching

Consider a matching *M* and a vertex cover *S*

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from *M*

Vertex Cover vs Matching

- FREIBURG
- In the following, assume that S^* is an optimal vertex cover

Theorem: If *M* is a maximal matching, then $S \coloneqq \bigcup_{e \in M} e$ is a vertex cover of size $|S| \le 2 \cdot |S^*|$.

Proof:

• *M* is maximal: for every edge $\{u, v\} \in E$, either *u* or *v* (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Dominating Set:

Given a graph G = (V, E), a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \setminus S$, there is a neighbor $v \in S$.

- The dominating set problem is as hard as the general set cover problem.
 - There is a simple reduction to transform every set cover instance into an equivalent dominating set instance.

Minimum Hitting Set

Given: Set of elements X and collection of subsets $S \subseteq 2^X$

- Sets cover
$$X: \bigcup_{S \in \mathcal{S}} S = X$$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that $\forall S \in S : S \cap H \neq \emptyset$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

