Algorithm Theory Sample Solution Exercise Sheet 2

Due: Tuesday, 2nd of November, 2021, 4 pm

Exercise 1: Computing the Median

Let A be an unsorted Array of pairwise distinct integers of length n. We want to compute the median of A, i.e., the element $m \in A$ that would be in the middle of A if we would sort A (we say the median is the smaller of the two "middle" elements in case A is of even length). We want to accomplish this deterministically ${ }^{1}$ in time $O(n)$.

Remark: You can not assume that the size of integers in A is constant in n, thus simply sorting A is not possible in $O(n)$ time.
(a) We start with an algorithm that computes a value relatively close to the median. The first step is to partition the elements of A into $k:=\left\lceil\frac{n}{5}\right\rceil$ consecutive sub-arrays (group) $A_{i}(i \in\{1, \ldots, k\})$ of 5 elements each (the last group A_{k} may be smaller). Then compute the median m_{i} of each group A_{i}. Let m^{\prime} be the median of m_{1}, \ldots, m_{k}. Show that at least $\frac{3 n}{10}$ elements in A are smaller than or equal to m^{\prime} and $\frac{3 n}{10}$ elements in A are larger than or equal to m^{\prime}. (Edit: a previous version made the claim for the smaller fraction $\frac{n}{5}$ instead of $\frac{3 n}{10}$, but the proof is basically the same.) (3 Points)

Hint: You may assume that n is divisible by 5.
(b) Give a divide and conquer algorithm to compute the $j^{\text {th }}$-largest element of A in time $O(n)$ for some j (edit: or analogously compute the $j^{\text {th }}$-smallest, either can be used to compute the median). Argue why your algorithm is correct and why it has the desired running time.
(7 Points)
Hint: Use part (a) as subroutine.

Sample Solution

(a) Let $k^{\prime}:=\lceil k / 2\rceil$ be the index of the "group median" $m^{\prime}=m_{k^{\prime}}$ of m_{1}, \ldots, m_{k}. Then the medians $m_{1}, \ldots, m_{k^{\prime}}$ are smaller than or equal to m^{\prime} and $m_{k^{\prime}}, \ldots, m_{k}$ are larger than or equal to m^{\prime}. In either case, these are at least $\lceil k / 2\rceil$ group medians which are smaller-equal or larger-equal m^{\prime}, respectively.

Since we assume all groups A_{i} are of size 5 (i.e., n is divisible by 5) for each group A_{i} with $m_{i} \geq m^{\prime}$ at least 3 elements in A_{i} are larger-equal m^{\prime}. That means in such a group a fraction of $3 / 5$ of elements is larger-equal m^{\prime}. Since the condition $m_{i} \geq m^{\prime}$ holds for $\lceil k / 2\rceil$ many groups, i.e. at least half of them, we have that $\frac{1}{2} \cdot \frac{3}{5} \cdot n=\frac{3 n}{10}$ elements are larger-equal m^{\prime}. By symmetry, the same holds for the number of elements smaller-equal m^{\prime}.
(b) Remark: It is algorithmically of little consequence if we search for the $j^{\text {th }}$-smallest or $j^{\text {th }}$-largest element, as the $j^{\text {th }}$-smallest is obtained by computing the $(n-j+1)^{\text {th }}$-largest and vice versa.
Assume we have a subroutine called group-medians (A) that returns an array containing the medians m_{i} of the groups A_{i} specified in part (a) together with their original indices in A (which

[^0]we need to recover the index of m^{\prime}). The runtime for this step is the same as iterating A once and every 5 steps attach the median of the last 5 elements to the output, i.e., $\mathcal{O}(n)$.
Further, we use the partition step known from Quicksort as a subroutine partition (A, p). It rearranges the content A such that all elements smaller-equal $A[p]$ are to the left of position p and all elements larger than $A[p]$ are to the right of index p in A and returns the new position of $A[p]$ in the resulting array. This takes $\mathcal{O}(n)$ time.
The following routine $\operatorname{find}(j, A)$ computes the $(j+1)^{\text {th }}$-smallest element in A (since the array A is zero-based).

```
Algorithm 1 find \((j, A) \quad \triangleright\) assert \(j \in\{0, \ldots, n-1\}\)
    \(n \leftarrow|A|\)
    if \(n=1\) then \(\triangleright\) base case
        return \(A[0]\)
    \(B \leftarrow\) group-medians \((A)\)
    \(k \leftarrow|B|\)
    \(m^{\prime} \leftarrow\) find \(\left(\left\lceil\frac{k}{2}\right\rceil-1, B\right) \quad \triangleright\) median of medians
    \(p \leftarrow\) index of \(m^{\prime}\) in \(A\)
    \(\ell \leftarrow \operatorname{partition}(A, p) \quad \triangleright\) elements smaller \(A[\ell]\) left, larger \(A[\ell]\) right, \(A[\ell]\) in final position
    if \(j=\ell\) then
        return \(A[\ell]\)
    else if \(j<\ell\) then \(\quad \triangleright j^{\text {th }}\)-smallest must be in \(A[0 . . \ell-1]\)
        return find ( \(j, A[0 . . \ell-1]\) )
    else
        return find \((j-(\ell+1), A[(\ell+1) . . n])\)
```

Running time: A call of find (j, A) has a running time of $\mathcal{O}(n)$ to compute the group medians and do the partition, plus the runtime of the two recursive calls of the function. The first recursive call is on an instance of size roughly $n / 5$.
The second recursive call is on a subarray $A[1 . . \ell-1]$ or $A[(\ell+1) . . n]$. where ℓ is the index of m^{\prime} after partitioning. We know that m^{\prime} is larger-equal and smaller-equal $\frac{3 n}{10}$ elements in A. This is therefore equal to the number of elements that we loose in subarrays $A[1 . . \ell-1]$ or $A[(\ell+1) . . n]$ and therefore both are of size at most $\frac{7 n}{10}$.
The function for the running time can thus be given recursively as $T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+c \cdot n$ for some constant $c>0$. We claim that $T(n) \leq 10 \cdot c \cdot n$. In the base case $n=1$ this is certainly true (for an appropriate constant c) as we just make a check and immediately return a value. Inductively (hypothesizing that the claim is true for all $n^{\prime}<n$) we get that

$$
T(n) \leq T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}\right)+c \cdot n \stackrel{(\text { Hypothesis })}{\leq} 10 \cdot c \cdot\left(\frac{n}{5}+\frac{7 n}{10}\right)+c \cdot n=10 \cdot c \cdot n .
$$

Correctness: We make an inductive argument over n. If A has just $n=1$ element we can clearly return $A[0]$. Presume correctness for all $n^{\prime}<n$. After the partition step all elements smaller than $A(\ell)$ are to its left and all elements larger than $A(\ell)$ to its right and $A(\ell)$ is at the correct position it would also have if A were sorted. So if $j=\ell$ we can be certain that this is the $j^{\text {th }}$-smallest element and return it.
Else, if $j<\ell$, then the $j^{\text {th }}$-smallest element in A must be to the left of index ℓ, which is why we get the correct result with the recursive call on a strictly smaller subarray $A[1 . . \ell-1]$ (by induction hypothesis).
Else, if $j>\ell$ then the $j^{\text {th }}$-smallest element in A must be to the right of index ℓ. However, the $j^{\text {th }}$-smallest element in A now corresponds to the $(j-\ell-1)^{\text {th }}$-smallest element in $A[(\ell+1) . . n]$, since we loose $\ell+1$ elements in $A[0 . . \ell]$. With this modified search index the recursive call find ($j-$ $(\ell+1), A[(\ell+1) . . n])$ returns the correct result (by induction hypothesis).

Exercise 2: Fast Fourier Transformation (FFT)

Let $p(x)=8 x^{7}+7 x^{6}+6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1$. We want to compute the discrete fourier transform $D F T_{8}(p)$ (where we define $D F T_{8}(p):=D F T_{8}(a)$ given that a is the vector of coefficients of $p)$. More specifically, we want you to visualize the steps which the FFT-algorithm performs as follows.
(a) Illustrate the divide procedure of the algorithm. More precisely, for the i-th divide step, write down all the polynomials $p_{i j}$ for $j \in\left\{0, \ldots, 2^{i}-1\right\}$ that you obtain from further dividing the polynomials from the previous divide step $i-1$ (we define $p_{00}:=p$).
(3 Points)
(b) Illustrate the combine procedure of the algorithm. That is, starting with the polynomials of smallest degree as base cases, compute the $\operatorname{DFT} T_{N}\left(p_{i j}\right)$ bottom up with the recursive formula given in the lecture (where N is the smallest power of 2 such that $\operatorname{deg}\left(p_{i j}\right)<N$).
(7 Points)
Remarks: The base case for a polynomial $p=a$ of degree 0 is $D F T_{1}(p)=D F T_{1}(a)=a$. It suffices to give the $p_{i j}(\omega)$ for all $N^{\text {th }}$ roots of unity ω, from which $D F T_{N}\left(p_{i j}\right)$ can be derived. Use $\sqrt{ }$ instead of floating point numbers if possible (for instance $\omega_{8}^{1}=\frac{i+1}{\sqrt{2}}$ and $\omega_{8}^{3}=\frac{i-1}{\sqrt{2}}$).

Sample Solution

(a)

$$
\begin{aligned}
& p_{00}(x)=8 x^{7}+7 x^{6}+6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1 \\
& p_{10}(x)=7 x^{3}+5 x^{2}+3 x+1 \\
& p_{11}(x)=8 x^{3}+6 x^{2}+4 x+2 \\
& p_{20}(x)=5 x+1 \\
& p_{21}(x)=7 x+3 \\
& p_{22}(x)=6 x+2 \\
& p_{23}(x)=8 x+4 \\
& p_{30}(x)=1 \\
& p_{31}(x)=5 \\
& p_{32}(x)=3 \\
& p_{33}(x)=7 \\
& p_{34}(x)=2 \\
& p_{35}(x)=6 \\
& p_{36}(x)=4 \\
& p_{37}(x)=8
\end{aligned}
$$

(b) Base cases of the FFT algorithm (for any $x \in \mathbb{C}$):

$$
\begin{aligned}
& p_{30}(x)=D F T_{1}\left(p_{30}\right)=1 \\
& p_{31}(x)=D F T_{1}\left(p_{31}\right)=5 \\
& p_{32}(x)=D F T_{1}\left(p_{32}\right)=3 \\
& p_{33}(x)=D F T_{1}\left(p_{33}\right)=7 \\
& p_{34}(x)=D F T_{1}\left(p_{34}\right)=2 \\
& p_{35}(x)=D F T_{1}\left(p_{35}\right)=6 \\
& p_{36}(x)=D F T_{1}\left(p_{36}\right)=4 \\
& p_{37}(x)=D F T_{1}\left(p_{37}\right)=8
\end{aligned}
$$

Bottom up computation with the recursive formula:

$$
\begin{aligned}
& p_{20}\left(\omega_{2}^{0}\right)=p_{30}\left(\omega_{1}^{0}\right)+\omega_{2}^{0} \cdot p_{31}\left(\omega_{1}^{0}\right)=1+1 \cdot 5=6 \\
& p_{20}\left(\omega_{2}^{1}\right)=p_{30}\left(\omega_{1}^{0}\right)-\omega_{2}^{0} \cdot p_{31}\left(\omega_{1}^{0}\right)=1-1 \cdot 5=-4 \\
& p_{21}\left(\omega_{2}^{0}\right)=p_{32}\left(\omega_{1}^{0}\right)+\omega_{2}^{0} \cdot p_{33}\left(\omega_{1}^{0}\right)=3+1 \cdot 7=10 \\
& p_{21}\left(\omega_{2}^{1}\right)=p_{32}\left(\omega_{1}^{0}\right)-\omega_{2}^{0} \cdot p_{33}\left(\omega_{1}^{0}\right)=3-1 \cdot 7=-4 \\
& p_{22}\left(\omega_{2}^{0}\right)=p_{34}\left(\omega_{1}^{0}\right)+\omega_{2}^{0} \cdot p_{35}\left(\omega_{1}^{0}\right)=2+1 \cdot 6=8 \\
& p_{22}\left(\omega_{2}^{1}\right)=p_{34}\left(\omega_{1}^{0}\right)-\omega_{2}^{0} \cdot p_{35}\left(\omega_{1}^{0}\right)=2-1 \cdot 6=-4 \\
& p_{23}\left(\omega_{2}^{0}\right)=p_{36}\left(\omega_{1}^{0}\right)+\omega_{2}^{0} \cdot p_{37}\left(\omega_{1}^{0}\right)=4+1 \cdot 8=12 \\
& p_{23}\left(\omega_{2}^{1}\right)=p_{36}\left(\omega_{1}^{0}\right)-\omega_{2}^{0} \cdot p_{37}\left(\omega_{1}^{0}\right)=4-1 \cdot 8=-4
\end{aligned}
$$

$$
p_{10}\left(\omega_{4}^{0}\right)=p_{20}\left(\omega_{2}^{0}\right)+\omega_{4}^{0} \cdot p_{21}\left(\omega_{2}^{0}\right)=6+1 \cdot 10=16
$$

$$
p_{10}\left(\omega_{4}^{1}\right)=p_{20}\left(\omega_{2}^{1}\right)+\omega_{4}^{1} \cdot p_{21}\left(\omega_{2}^{1}\right)=-4+i \cdot(-4)=-4-4 i
$$

$$
p_{10}\left(\omega_{4}^{2}\right)=p_{20}\left(\omega_{2}^{0}\right)-\omega_{4}^{0} \cdot p_{21}\left(\omega_{2}^{0}\right)=6-1 \cdot 10=-4
$$

$$
p_{10}\left(\omega_{4}^{3}\right)=p_{20}\left(\omega_{2}^{1}\right)-\omega_{4}^{1} \cdot p_{21}\left(\omega_{2}^{1}\right)=-4-i \cdot(-4)=-4+4 i
$$

$$
p_{11}\left(\omega_{4}^{0}\right)=p_{22}\left(\omega_{2}^{0}\right)+\omega_{4}^{0} \cdot p_{23}\left(\omega_{2}^{0}\right)=8+1 \cdot 12=20
$$

$$
p_{11}\left(\omega_{4}^{1}\right)=p_{22}\left(\omega_{2}^{1}\right)+\omega_{4}^{1} \cdot p_{23}\left(\omega_{2}^{1}\right)=-4+i \cdot(-4)=-4-4 i
$$

$$
p_{11}\left(\omega_{4}^{2}\right)=p_{22}\left(\omega_{2}^{0}\right)-\omega_{4}^{0} \cdot p_{23}\left(\omega_{2}^{0}\right)=8-1 \cdot 12=-4
$$

$$
p_{11}\left(\omega_{4}^{3}\right)=p_{22}\left(\omega_{2}^{1}\right)-\omega_{4}^{1} \cdot p_{23}\left(\omega_{2}^{1}\right)=-4-i \cdot(-4)=-4+4 i
$$

$$
\begin{aligned}
& p_{00}\left(\omega_{8}^{0}\right)=p_{10}\left(\omega_{4}^{0}\right)+\omega_{8}^{0} \cdot p_{11}\left(\omega_{4}^{0}\right)=16+1 \cdot 20=36 \\
& p_{00}\left(\omega_{8}^{1}\right)=p_{10}\left(\omega_{4}^{1}\right)+\omega_{8}^{1} \cdot p_{11}\left(\omega_{4}^{1}\right)=-4-4 i+\frac{i+1}{\sqrt{2}} \cdot(-4-4 i)=-4-4 i \cdot(\sqrt{2}+1) \\
& p_{00}\left(\omega_{8}^{2}\right)=p_{10}\left(\omega_{4}^{2}\right)+\omega_{8}^{2} \cdot p_{11}\left(\omega_{4}^{2}\right)=-4+i \cdot(-4)=-4-4 i \\
& p_{00}\left(\omega_{8}^{3}\right)=p_{10}\left(\omega_{4}^{3}\right)+\omega_{8}^{3} \cdot p_{11}\left(\omega_{4}^{3}\right)=-4+4 i+\frac{i-1}{\sqrt{2}} \cdot(-4+4 i)=-4-4 i \cdot(\sqrt{2}-1) \\
& p_{00}\left(\omega_{8}^{4}\right)=p_{10}\left(\omega_{4}^{0}\right)-\omega_{8}^{0} \cdot p_{11}\left(\omega_{4}^{0}\right)=16-1 \cdot 20=-4 \\
& p_{00}\left(\omega_{8}^{5}\right)=p_{10}\left(\omega_{4}^{1}\right)-\omega_{8}^{1} \cdot p_{11}\left(\omega_{4}^{1}\right)=-4-4 i-\frac{i+1}{\sqrt{2}} \cdot(-4-4 i)=-4+4 i \cdot(\sqrt{2}-1) \\
& p_{00}\left(\omega_{8}^{6}\right)=p_{10}\left(\omega_{4}^{2}\right)-\omega_{8}^{2} \cdot p_{11}\left(\omega_{4}^{2}\right)=-4-i \cdot(-4)=-4+4 i \\
& p_{00}\left(\omega_{8}^{7}\right)=p_{10}\left(\omega_{4}^{3}\right)-\omega_{8}^{3} \cdot p_{11}\left(\omega_{4}^{3}\right)=-4+4 i-\frac{i-1}{\sqrt{2}} \cdot(-4+4 i)=-4+4 i \cdot(\sqrt{2}+1)
\end{aligned}
$$

Rewriting the discrete fourier transforms as vectors (not strictly necessary, though):

$$
\begin{aligned}
& D F T_{2}\left(p_{20}\right)=(6,-4) \\
& D F T_{2}\left(p_{21}\right)=(10,-4) \\
& D F T_{2}\left(p_{22}\right)=(8,-4) \\
& D F T_{2}\left(p_{23}\right)=(12,-4)
\end{aligned}
$$

$$
\begin{aligned}
& D F T_{4}\left(p_{10}\right)=(16,-4-4 i,-4,-4+4 i) \\
& D F T_{4}\left(p_{11}\right)=(20,-4-4 i,-4,-4+4 i)
\end{aligned}
$$

$$
D F T_{8}\left(p_{00}\right)=(36,-4-4 i \cdot(\sqrt{2}+1),-4-4 i,-4-4 i \cdot(\sqrt{2}-1),
$$

$$
-4,-4+4 i \cdot(\sqrt{2}-1),-4+4 i,-4+4 i \cdot(\sqrt{2}+1))
$$

[^0]: ${ }^{1}$ That is, the algorithm must always succeed within the claimed running time.

