
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Sample Solution Exercise Sheet 2
Due: Tuesday, 2nd of November, 2021, 4 pm

Exercise 1: Computing the Median (10 Points)

Let A be an unsorted Array of pairwise distinct integers of length n. We want to compute the median
of A, i.e., the element m ∈ A that would be in the middle of A if we would sort A (we say the median
is the smaller of the two “middle” elements in case A is of even length). We want to accomplish this
deterministically1 in time O(n).

Remark: You can not assume that the size of integers in A is constant in n, thus simply sorting A is
not possible in O(n) time.

(a) We start with an algorithm that computes a value relatively close to the median. The first step is
to partition the elements of A into k := dn5 e consecutive sub-arrays (group) Ai (i ∈ {1, . . . , k}) of
5 elements each (the last group Ak may be smaller). Then compute the median mi of each group
Ai. Let m′ be the median of m1, . . . ,mk. Show that at least 3n

10 elements in A are smaller than or
equal to m′ and 3n

10 elements in A are larger than or equal to m′. (Edit: a previous version made
the claim for the smaller fraction n

5 instead of 3n
10 , but the proof is basically the same.) (3 Points)

Hint: You may assume that n is divisible by 5.

(b) Give a divide and conquer algorithm to compute the jth-largest element of A in time O(n) for
some j (edit: or analogously compute the jth-smallest, either can be used to compute the median).
Argue why your algorithm is correct and why it has the desired running time. (7 Points)

Hint: Use part (a) as subroutine.

Sample Solution

(a) Let k′ := dk/2e be the index of the “group median” m′ = mk′ of m1, . . . ,mk. Then the medians
m1, . . . ,mk′ are smaller than or equal to m′ and mk′ , . . . ,mk are larger than or equal to m′. In
either case, these are at least dk/2e group medians which are smaller-equal or larger-equal m′,
respectively.

Since we assume all groups Ai are of size 5 (i.e., n is divisible by 5) for each group Ai with mi ≥ m′

at least 3 elements in Ai are larger-equal m′. That means in such a group a fraction of 3/5 of
elements is larger-equal m′. Since the condition mi ≥ m′ holds for dk/2e many groups, i.e. at
least half of them, we have that 1

2 ·
3
5 · n = 3n

10 elements are larger-equal m′. By symmetry, the
same holds for the number of elements smaller-equal m′.

(b) Remark: It is algorithmically of little consequence if we search for the jth-smallest or jth-largest
element, as the jth-smallest is obtained by computing the (n−j+1)th-largest and vice versa.

Assume we have a subroutine called group-medians(A) that returns an array containing the
medians mi of the groups Ai specified in part (a) together with their original indices in A (which

1That is, the algorithm must always succeed within the claimed running time.

we need to recover the index of m′). The runtime for this step is the same as iterating A once and
every 5 steps attach the median of the last 5 elements to the output, i.e., O(n).

Further, we use the partition step known from Quicksort as a subroutine partition(A, p). It
rearranges the content A such that all elements smaller-equal A[p] are to the left of position p and
all elements larger than A[p] are to the right of index p in A and returns the new position of A[p]
in the resulting array. This takes O(n) time.

The following routine find(j, A) computes the (j+1)th-smallest element in A (since the array A
is zero-based).

Algorithm 1 find(j, A) . assert j ∈ {0, . . . , n− 1}
n← |A|
if n = 1 then . base case

return A[0]

B ← group-medians(A)
k ← |B|
m′ ← find(dk2e−1, B) . median of medians
p← index of m′ in A
`← partition(A, p) . elements smaller A[`] left, larger A[`] right, A[`] in final position
if j = ` then . jth-smallest found

return A[`]
else if j < ` then . jth-smallest must be in A[0..`−1]

return find(j, A[0..`−1])
else . jth-smallest must be in A[(`+1)..n]

return find(j−(` + 1), A[(`+1)..n])

Running time: A call of find(j, A) has a running time of O(n) to compute the group medians
and do the partition, plus the runtime of the two recursive calls of the function. The first recursive
call is on an instance of size roughly n/5.

The second recursive call is on a subarray A[1..`− 1] or A[(` + 1)..n]. where ` is the index of m′

after partitioning. We know that m′ is larger-equal and smaller-equal 3n
10 elements in A. This is

therefore equal to the number of elements that we loose in subarrays A[1..` − 1] or A[(` + 1)..n]
and therefore both are of size at most 7n

10 .

The function for the running time can thus be given recursively as T (n) ≤ T
(
n
5

)
+ T

(
7n
10

)
+ c · n

for some constant c > 0. We claim that T (n) ≤ 10 · c · n. In the base case n = 1 this is certainly
true (for an appropriate constant c) as we just make a check and immediately return a value.
Inductively (hypothesizing that the claim is true for all n′ < n) we get that

T (n) ≤ T
(
n
5

)
+ T

(
7n
10

)
+ c · n

(Hypothesis)

≤ 10 · c · (n5 + 7n
10) + c · n = 10 · c · n.

Correctness: We make an inductive argument over n. If A has just n = 1 element we can clearly
return A[0]. Presume correctness for all n′ < n. After the partition step all elements smaller than
A(`) are to its left and all elements larger than A(`) to its right and A(`) is at the correct position
it would also have if A were sorted. So if j = ` we can be certain that this is the jth-smallest
element and return it.

Else, if j < `, then the jth-smallest element in A must be to the left of index `, which is why we
get the correct result with the recursive call on a strictly smaller subarray A[1..`−1] (by induction
hypothesis).

Else, if j > ` then the jth-smallest element in A must be to the right of index `. However, the
jth-smallest element in A now corresponds to the (j − ` − 1)th-smallest element in A[(`+1)..n],
since we loose `+1 elements in A[0..`]. With this modified search index the recursive call find(j−
(` + 1), A[(`+1)..n]) returns the correct result (by induction hypothesis).

Exercise 2: Fast Fourier Transformation (FFT) (10 Points)

Let p(x) = 8x7 + 7x6 + 6x5 + 5x4 + 4x3 + 3x2 + 2x + 1. We want to compute the discrete fourier
transform DFT8(p) (where we define DFT8(p) := DFT8(a) given that a is the vector of coefficients of
p). More specifically, we want you to visualize the steps which the FFT-algorithm performs as follows.

(a) Illustrate the divide procedure of the algorithm. More precisely, for the i-th divide step, write
down all the polynomials pij for j ∈ {0, . . . , 2i−1} that you obtain from further dividing the
polynomials from the previous divide step i−1 (we define p00 := p). (3 Points)

(b) Illustrate the combine procedure of the algorithm. That is, starting with the polynomials of
smallest degree as base cases, compute the DFTN (pij) bottom up with the recursive formula
given in the lecture (where N is the smallest power of 2 such that deg(pij) < N). (7 Points)

Remarks: The base case for a polynomial p = a of degree 0 is DFT1(p) = DFT1(a) = a. It suffices to
give the pij(ω) for all N th roots of unity ω, from which DFTN (pij) can be derived. Use

√
· instead of

floating point numbers if possible (for instance ω1
8 = i+1√

2
and ω3

8 = i−1√
2

).

Sample Solution

(a)

p00(x) = 8x7 + 7x6 + 6x5 + 5x4 + 4x3 + 3x2 + 2x + 1

p10(x) = 7x3 + 5x2 + 3x + 1

p11(x) = 8x3 + 6x2 + 4x + 2

p20(x) = 5x + 1

p21(x) = 7x + 3

p22(x) = 6x + 2

p23(x) = 8x + 4

p30(x) = 1

p31(x) = 5

p32(x) = 3

p33(x) = 7

p34(x) = 2

p35(x) = 6

p36(x) = 4

p37(x) = 8

(b) Base cases of the FFT algorithm (for any x ∈ C):

p30(x) = DFT1

(
p30

)
= 1

p31(x) = DFT1

(
p31

)
= 5

p32(x) = DFT1

(
p32

)
= 3

p33(x) = DFT1

(
p33

)
= 7

p34(x) = DFT1

(
p34

)
= 2

p35(x) = DFT1

(
p35

)
= 6

p36(x) = DFT1

(
p36

)
= 4

p37(x) = DFT1

(
p37

)
= 8

Bottom up computation with the recursive formula:

p20(ω
0
2) = p30(ω

0
1) + ω0

2 · p31(ω0
1) = 1 + 1 · 5 = 6

p20(ω
1
2) = p30(ω

0
1)− ω0

2 · p31(ω0
1) = 1− 1 · 5 = −4

p21(ω
0
2) = p32(ω

0
1) + ω0

2 · p33(ω0
1) = 3 + 1 · 7 = 10

p21(ω
1
2) = p32(ω

0
1)− ω0

2 · p33(ω0
1) = 3− 1 · 7 = −4

p22(ω
0
2) = p34(ω

0
1) + ω0

2 · p35(ω0
1) = 2 + 1 · 6 = 8

p22(ω
1
2) = p34(ω

0
1)− ω0

2 · p35(ω0
1) = 2− 1 · 6 = −4

p23(ω
0
2) = p36(ω

0
1) + ω0

2 · p37(ω0
1) = 4 + 1 · 8 = 12

p23(ω
1
2) = p36(ω

0
1)− ω0

2 · p37(ω0
1) = 4− 1 · 8 = −4

p10(ω
0
4) = p20(ω

0
2) + ω0

4 · p21(ω0
2) = 6 + 1 · 10 = 16

p10(ω
1
4) = p20(ω

1
2) + ω1

4 · p21(ω1
2) = −4 + i · (−4) = −4− 4i

p10(ω
2
4) = p20(ω

0
2)− ω0

4 · p21(ω0
2) = 6− 1 · 10 = −4

p10(ω
3
4) = p20(ω

1
2)− ω1

4 · p21(ω1
2) = −4− i · (−4) = −4 + 4i

p11(ω
0
4) = p22(ω

0
2) + ω0

4 · p23(ω0
2) = 8 + 1 · 12 = 20

p11(ω
1
4) = p22(ω

1
2) + ω1

4 · p23(ω1
2) = −4 + i · (−4) = −4− 4i

p11(ω
2
4) = p22(ω

0
2)− ω0

4 · p23(ω0
2) = 8− 1 · 12 = −4

p11(ω
3
4) = p22(ω

1
2)− ω1

4 · p23(ω1
2) = −4− i · (−4) = −4 + 4i

p00(ω
0
8) = p10(ω

0
4) + ω0

8 · p11(ω0
4) = 16 + 1 · 20 = 36

p00(ω
1
8) = p10(ω

1
4) + ω1

8 · p11(ω1
4) = −4− 4i + i+1√

2
· (−4− 4i) = −4− 4i · (

√
2+1)

p00(ω
2
8) = p10(ω

2
4) + ω2

8 · p11(ω2
4) = −4 + i · (−4) = −4− 4i

p00(ω
3
8) = p10(ω

3
4) + ω3

8 · p11(ω3
4) = −4 + 4i + i−1√

2
· (−4 + 4i) = −4− 4i · (

√
2−1)

p00(ω
4
8) = p10(ω

0
4)− ω0

8 · p11(ω0
4) = 16− 1 · 20 = −4

p00(ω
5
8) = p10(ω

1
4)− ω1

8 · p11(ω1
4) = −4− 4i− i+1√

2
· (−4− 4i) = −4 + 4i · (

√
2−1)

p00(ω
6
8) = p10(ω

2
4)− ω2

8 · p11(ω2
4) = −4− i · (−4) = −4 + 4i

p00(ω
7
8) = p10(ω

3
4)− ω3

8 · p11(ω3
4) = −4 + 4i− i−1√

2
· (−4 + 4i) = −4 + 4i · (

√
2+1)

Rewriting the discrete fourier transforms as vectors (not strictly necessary, though):

DFT2(p20) = (6,−4)

DFT2(p21) = (10,−4)

DFT2(p22) = (8,−4)

DFT2(p23) = (12,−4)

DFT4(p10) = (16,−4− 4i,−4,−4 + 4i)

DFT4(p11) = (20,−4− 4i,−4,−4 + 4i)

DFT8(p00) =
(
36,−4− 4i · (

√
2+1),−4− 4i,−4− 4i · (

√
2−1),

− 4,−4 + 4i · (
√

2−1),−4 + 4i,−4 + 4i · (
√

2+1)
)

