Algorithm Theory Sample Solution Exercise Sheet 3

Due: Tuesday, 9th of November, 2021, 4 pm

Exercise 1: Scheduling

(8 Points)
Given n jobs of lengths $t_{1} \ldots, t_{n}$ with one deadline $d \geq 0$, we want to schedule these jobs such that the average lateness is minimized. That is, for each job i we want to find a start time and finishing time $0 \leq s(i) \leq f(i)$ with $f(i)-s(i)=t_{i}$ such that the intervals $[s(i), f(i)]$ are pairwise non-overlapping (overlapping start- and endpoints are allowed) and the average over all $L(i)=\max \{0, f(i)-d\}$ is minimal.
(a) Describe a greedy algorithm for this problem.
(b) Prove that it computes an optimal solution.

Sample Solution

(a) We schedule the jobs by length t_{i}, starting with the shortest and ending with the longest. That is, we first sort the jobs by length and then set $s(1)=0, f(1)=t_{1}$ and for all $i \geq 2: s(i)=f(i-1)$, $f(i)=s(i)+t_{i}$. This minimizes the sum of all latenesses (and hence the average lateness).
(b) We prove this with an exchange argument. Let O be an optimal solution. We transfer O to a greedy solution without increasing the total lateness (if the job lengths are not pairwise distinct, there are different greedy solutions). To simplify presentation, assume that each job is represented by an integer such that $O=(1, \ldots, n)$. If O is not a greedy solution, there must be jobs i and $i+1$ with $t_{i}>t_{i+1}$. We exchange jobs i and $i+1$ and compare the old and new finishing times of all jobs:

$$
f_{\text {new }}(i)=\sum_{j<i} t_{j}+t_{i+1}+t_{i}=\sum_{j \leq i+1} t_{j}=f_{\text {old }}(i+1)
$$

and

$$
f_{\text {new }}(i+1)=\sum_{j<i} t_{j}+t_{i+1}<\sum_{j<i} t_{j}+t_{i}=f_{\text {old }}(i)
$$

For the latenesses it follows $L_{\text {new }}(i)=L_{\text {old }}(i+1)$ and $L_{\text {new }}(i+1) \leq L_{o l d}(i)$. The finishing time and thus the lateness of all other jobs do not change. We obtain

$$
\begin{aligned}
\sum_{j=1}^{n} L_{\text {new }}(j) & =\sum_{j=1}^{i-1} L_{\text {new }}(j)+L_{\text {new }}(i)+L_{\text {new }}(i+1)+\sum_{j=i+2}^{n} L_{\text {new }}(j) \\
& \leq \sum_{j=1}^{i-1} L_{\text {old }}(j)+L_{\text {old }}(i+1)+L_{\text {old }}(i)+\sum_{j=i+2}^{n} L_{\text {old }}(j)=\sum_{j=1}^{n} L_{\text {old }}(j)
\end{aligned}
$$

So we have seen that exchanging jobs i and $i+1$ did not increase the sum of all latenesses and thus the average lateness did not increase. We proceed this way until the jobs are sorted by length, i.e., we obtain a greedy solution. It follows inductively that the average lateness of this solution is not larger than the one of O and therefore the greedy solution is optimal.

Exercise 2: Prefix Codes

Imagine you have n characters c_{1}, \ldots, c_{n} and each has a frequency f_{1}, \ldots, f_{n} (w.l.o.g. sorted ascending) with which it occurs in a text. The goal is to compute a code over $\{0,1\}$ for each character (i.e., assign a unique bit sequence to each character) which is prefix-free, i.e., no codeword is a prefix of another.
Such a prefix code can be obtained by constructing a full binary tree ${ }^{1}$: Use the characters c_{1}, \ldots, c_{n} as leaves, assign 0 and 1 to all edges, such that internal nodes have a child with a 0 -edge and a child with a 1-edge. The code of c_{i} is then given by the bits on the path from the root to the leaf c_{i}.

The goal is to minimize the total length of a message with the given frequency of symbols, i.e. $\sum_{i=1}^{n} f_{i} \cdot \ell_{i}$, where ℓ_{i} is the length of the codeword of c_{i}. Analogously, we want to find a full binary tree that minimizes $\sum_{i=1}^{n} f_{i} \cdot d_{i}$, where d_{i} is the (unweighted) length of the path from root to c_{i} (depth).

Such a tree can be constructed with a greedy method: Start with c_{1}, \ldots, c_{n} as leaves (w.l.o.g. sorted by frequency). Add an internal node and make the two least frequent characters c_{1}, c_{2} its children (break ties arbitrarily). The internal node becomes a new character c_{n+1} with frequency $f_{n+1}=f_{1}+f_{2}$. Then "remove" the leaves c_{1}, c_{2} and recurse on the characters c_{3}, \ldots, c_{n+1} (i.e., treat c_{n+1} as new leaf). We call the resulting tree the greedy tree and the resulting prefix-code for c_{1}, \ldots, c_{n} the greedy code.
(a) Construct the greedy tree and greedy code for $n=6$ characters with frequency $f_{i}=i$. (3 Points) Remark: for more consistent solutions, assign 0 the left-child edges and 1 to right-child edges.
(b) Show that there is an optimal full binary tree T with leaves c_{1}, \ldots, c_{n} (i.e., that minimizes $\sum_{i=1}^{n} f_{i}$. d_{i}), in which the two least frequent elements c_{1}, c_{2} are siblings.
(5 Points)
Hint: Show that for two siblings c_{j}, c_{k} which are at largest depth in some full binary tree it does not make $\sum_{i=1}^{n} f_{i} \cdot d_{i}$ larger if we swap c_{j} with c_{1} and c_{k} with c_{2}.
(c) Give an inductive argument that the greedy code is an optimal prefix code.
(4 Points)

Sample Solution

(a) Remark: You may have recognized that the greedy algorithm corresponds to the procedure to compute Huffman-codes (proposed by David A. Huffman).
By recursively merging leaves we obtain the following "greedy-tree" (Huffman tree).

Figure 1: "Greedy"-tree (Huffman-tree) with internal nodes containing merged characters. Frequency of nodes to the bottom left (blue).

The resulting Huffman code is

[^0]| char | code |
| :---: | :---: |
| c_{1} | 0000 |
| c_{2} | 0001 |
| c_{3} | 001 |
| c_{4} | 10 |
| c_{5} | 11 |
| c_{6} | 01 |

(b) For a full binary tree T^{\prime} with leaves c_{1}, \ldots, c_{n}, define the weight of T^{\prime} as $w\left(T^{\prime}\right)=\sum_{i=1}^{n} f_{i} \cdot d_{i}$.

Let T^{\prime} be a full binary tree with leaves c_{1}, \ldots, c_{n} where c_{1}, c_{2} are not siblings and optimal weight $w\left(T^{\prime}\right)=\sum_{i=1}^{n} f_{i} \cdot d_{i}$. Let c_{j}, c_{k} be two siblings at largest depth $d^{\prime}:=d_{j}, d_{k}$ in T^{\prime}. We essentially show how to swap c_{j} or c_{k} with a node of smaller frequency thereby making the weight of the resulting tree not larger. This means that we can swap c_{j} with c_{1} and c_{k} with c_{2} since $f_{1} \leq f_{j}$ and $f_{2} \leq f_{k}$ (by definition).
W.l.o.g., we focus on swapping c_{j} with c_{1}. Let $\delta:=d_{j}-d_{1} \geq 0$ be the difference in depth of the two leaves. Consider the tree T, where we swap c_{1} with c_{j}. In particular, swapping the leaves means that our new weight is $w(T)=f_{1} d_{j}+f_{j} d_{1}+\sum_{i \neq 1, j} f_{i} \cdot d_{i}$. We have

$$
\begin{aligned}
w\left(T^{\prime}\right)=\sum_{i=1}^{n} f_{i} \cdot d_{i} & =f_{1} d_{1}+f_{j} d_{j}+\sum_{i \neq 1, j} f_{i} \cdot d_{i} \\
& =f_{1}\left(d_{j}-\delta\right)+f_{j}\left(d_{1}+\delta\right)+\sum_{i \neq 1, j} f_{i} \cdot d_{i} \\
& =f_{1} d_{j}+f_{j} d_{1}+\delta\left(f_{i}-f_{1}\right)+\sum_{i \neq 1, j} f_{i} \cdot d_{i} \\
& =w(T)+\underbrace{\delta\left(f_{i}-f_{1}\right)}_{\geq 0}
\end{aligned}
$$

This implies $w(T) \leq w\left(T^{\prime}\right)$. As c_{2} and c_{k} fulfill the same requirements which we used here, they can be swapped analogously, without increasing the weight of the resulting tree T. Since we assumed T^{\prime} was already optimal we have $w(T)=w\left(T^{\prime}\right)$, i.e., T is also optimal.
(c) Since an optimal prefix code (that minimizes $\sum_{i=1}^{n} f_{i} \cdot \ell_{i}$, where ℓ_{i} is the length of the code of c_{i}) must be constructable from a full binary tree with leaves c_{1}, \ldots, c_{n} and optimal weight (we give that argument further below) we only have to show that our greedy tree has optimal weight $w(T)=\sum_{i=1}^{n} f_{i} \cdot d_{i}$.
Let T_{n} be the greedy tree fore c_{1}, \ldots, c_{n}. In base case T_{2} we have just 2 characters and our greedy tree has just two leaves and a root, which is clearly optimal. Let now $n \in \mathbb{N}$. Our hypothesis is that the claim is true for $n-1$ (or less) characters, more specifically we hypothesize that $w\left(T_{n-1}\right)$ is optimal for any greedy tree T_{n-1} with $n-1$ characters. Now we want to show that $w\left(T_{n}\right)$, i.e. the weight of the greedy tree for c_{1}, \ldots, c_{n} is optimal as well.
For comparison, let T be an optimal full binary tree for c_{1}, \ldots, c_{n}. Further, we assume that c_{1}, c_{2} are siblings in T, which is not a restriction in terms of the minimal weight that can be achieved as we showed in part (b). Let d_{i} be the depth of c_{i} in T. Let T^{\prime} be the subtree of c_{3}, \ldots, c_{n+1}, where c_{n+1} is the parent of c_{1}, c_{2}. Let $f_{n+1}=f_{1}+f_{2}$ and let $d_{n+1}=d_{1}-1$ be the depth of c_{n+1} in T^{\prime}. Then we have

$$
\begin{aligned}
w(T)=\sum_{i=1}^{n} f_{i} \cdot d_{i} & =\left(\sum_{i=3}^{n+1} f_{i} \cdot d_{i}\right)+f_{1} \cdot d_{1}+f_{2} \cdot d_{2}-f_{n+1} \cdot d_{n+1} \\
& =w\left(T^{\prime}\right)+f_{1} \cdot d_{1}+f_{2} \cdot d_{2}-f_{n+1} \cdot d_{n+1} \\
& =w\left(T^{\prime}\right)+\left(f_{1}+f_{2}\right) \cdot d_{1}-\left(f_{1}+f_{2}\right) \cdot\left(d_{1}-1\right)=w\left(T^{\prime}\right)+f_{1}+f_{2}
\end{aligned}
$$

Since $w(T)$ is optimal, it is necessary that the weight $w\left(T^{\prime}\right)$ of the subtree T^{\prime} is optimal as well (otherwise $w(T)$ could be larger by making $w\left(T^{\prime}\right)$ larger). It is also sufficient that $w\left(T^{\prime}\right)$ is optimal
so that $w(T)$ is optimal, since $w(T)=w\left(T^{\prime}\right)+f_{1}+f_{2}$ depends only on $w\left(T^{\prime}\right)$ whereas f_{1}, f_{2} do not depend on T. So $w(T)$ is optimal if and only if $w\left(T^{\prime}\right)$ is optimal.

We already know that $w\left(T_{n-1}\right)$ is an optimal solution for c_{3}, \ldots, c_{n+1} from the hypothesis, thus $w(T)=w\left(T_{n-1}\right)+\left(f_{1}+f_{2}\right)$. Note that in the same way as above, by construction of T_{n}, we also have $w\left(T_{n}\right)=w\left(T_{n-1}\right)+\left(f_{1}+f_{2}\right)$, thus $w\left(T_{n}\right)=w(T)$.
Proof that an optimal prefix code can be constructed from a full binary tree with n leaves (not required): Every prefix code can be considered as a binary tree with leaves c_{1}, \ldots, c_{n}. Let us prove this first. Let c_{i} be the character with the longest codeword of length d. Consider the full and complete binary tree of depth d.
The codeword of some character c_{j} represents a unique node in that tree: start from the root, go left for a 0, right for 1, the node you end up corresponds to c_{j}. Then remove all internal nodes which do not have a descendant that corresponds to some c_{j}. After removal, all leaves must correspond to some character. Moreover, all nodes corresponding to some c_{j} must be leaves, since the code is prefix-free.
The optimal prefix code must correspond to a full binary tree. This is because if we have an internal node with only a single child, we can merge it with its child and thus make the codewords of all descendant leaves of this node by one bit shorter.

[^0]: ${ }^{1}$ In a full binary tree each node has 0 or 2 children.

