
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Sample Solution Exercise Sheet 3
Due: Tuesday, 9th of November, 2021, 4 pm

Exercise 1: Scheduling (8 Points)

Given n jobs of lengths t1 . . . , tn with one deadline d ≥ 0, we want to schedule these jobs such that the
average lateness is minimized. That is, for each job i we want to find a start time and finishing time
0 ≤ s(i) ≤ f(i) with f(i) − s(i) = ti such that the intervals [s(i), f(i)] are pairwise non-overlapping
(overlapping start- and endpoints are allowed) and the average over all L(i) = max{0, f(i)−d} is
minimal.

(a) Describe a greedy algorithm for this problem. (3 Points)

(b) Prove that it computes an optimal solution. (5 Points)

Sample Solution

(a) We schedule the jobs by length ti, starting with the shortest and ending with the longest. That is,
we first sort the jobs by length and then set s(1) = 0, f(1) = t1 and for all i ≥ 2 : s(i) = f(i−1),
f(i) = s(i) + ti. This minimizes the sum of all latenesses (and hence the average lateness).

(b) We prove this with an exchange argument. Let O be an optimal solution. We transfer O to a
greedy solution without increasing the total lateness (if the job lengths are not pairwise distinct,
there are different greedy solutions). To simplify presentation, assume that each job is represented
by an integer such that O = (1, . . . , n). If O is not a greedy solution, there must be jobs i and
i + 1 with ti > ti+1. We exchange jobs i and i + 1 and compare the old and new finishing times
of all jobs:

fnew(i) =
∑
j<i

tj + ti+1 + ti =
∑

j≤i+1

tj = fold(i+ 1)

and
fnew(i+ 1) =

∑
j<i

tj + ti+1 <
∑
j<i

tj + ti = fold(i)

For the latenesses it follows Lnew(i) = Lold(i + 1) and Lnew(i + 1) ≤ Lold(i). The finishing time
and thus the lateness of all other jobs do not change. We obtain

n∑
j=1

Lnew(j) =
i−1∑
j=1

Lnew(j) + Lnew(i) + Lnew(i+ 1) +
n∑

j=i+2

Lnew(j)

≤
i−1∑
j=1

Lold(j) + Lold(i+ 1) + Lold(i) +
n∑

j=i+2

Lold(j) =
n∑

j=1

Lold(j)

So we have seen that exchanging jobs i and i+1 did not increase the sum of all latenesses and thus
the average lateness did not increase. We proceed this way until the jobs are sorted by length,
i.e., we obtain a greedy solution. It follows inductively that the average lateness of this solution
is not larger than the one of O and therefore the greedy solution is optimal.



Exercise 2: Prefix Codes (12 Points)

Imagine you have n characters c1, . . . , cn and each has a frequency f1, . . . , fn (w.l.o.g. sorted ascending)
with which it occurs in a text. The goal is to compute a code over {0, 1} for each character (i.e., assign
a unique bit sequence to each character) which is prefix-free, i.e., no codeword is a prefix of another.

Such a prefix code can be obtained by constructing a full binary tree1: Use the characters c1, . . . , cn
as leaves, assign 0 and 1 to all edges, such that internal nodes have a child with a 0-edge and a child
with a 1-edge. The code of ci is then given by the bits on the path from the root to the leaf ci.

The goal is to minimize the total length of a message with the given frequency of symbols, i.e.∑n
i=1 fi · `i, where `i is the length of the codeword of ci. Analogously, we want to find a full binary

tree that minimizes
∑n

i=1 fi ·di, where di is the (unweighted) length of the path from root to ci (depth).

Such a tree can be constructed with a greedy method: Start with c1, . . . , cn as leaves (w.l.o.g. sorted by
frequency). Add an internal node and make the two least frequent characters c1, c2 its children (break
ties arbitrarily). The internal node becomes a new character cn+1 with frequency fn+1 = f1+f2. Then
“remove” the leaves c1, c2 and recurse on the characters c3, . . . , cn+1 (i.e., treat cn+1 as new leaf). We
call the resulting tree the greedy tree and the resulting prefix-code for c1, . . . , cn the greedy code.

(a) Construct the greedy tree and greedy code for n = 6 characters with frequency fi = i. (3 Points)

Remark: for more consistent solutions, assign 0 the left-child edges and 1 to right-child edges.

(b) Show that there is an optimal full binary tree T with leaves c1, . . . , cn (i.e., that minimizes
∑n

i=1 fi ·
di), in which the two least frequent elements c1, c2 are siblings. (5 Points)

Hint: Show that for two siblings cj , ck which are at largest depth in some full binary tree it does
not make

∑n
i=1 fi · di larger if we swap cj with c1 and ck with c2.

(c) Give an inductive argument that the greedy code is an optimal prefix code. (4 Points)

Sample Solution

(a) Remark: You may have recognized that the greedy algorithm corresponds to the procedure to com-
pute Huffman-codes (proposed by David A. Huffman).

By recursively merging leaves we obtain the following “greedy-tree” (Huffman tree).

c1

c1,c2

1 2 3 4 5 6

3

6

12

21

0 1

0

0

0

0

1

1

1

1

c2 c3 c4 c5 c6

c4,c5 9

c1,c2,c3

c1,c2,c3,c6

c1,c2,c3,c4,c5,c6

Figure 1: “Greedy”-tree (Huffman-tree) with internal nodes containing merged characters. Frequency
of nodes to the bottom left (blue).

The resulting Huffman code is

1In a full binary tree each node has 0 or 2 children.



char code

c1 0000
c2 0001
c3 001
c4 10
c5 11
c6 01

(b) For a full binary tree T ′ with leaves c1, . . . , cn, define the weight of T ′ as w(T ′) =
∑n

i=1 fi · di.
Let T ′ be a full binary tree with leaves c1, . . . , cn where c1, c2 are not siblings and optimal weight
w(T ′) =

∑n
i=1 fi · di. Let cj , ck be two siblings at largest depth d′ := dj , dk in T ′. We essentially

show how to swap cj or ck with a node of smaller frequency thereby making the weight of the
resulting tree not larger. This means that we can swap cj with c1 and ck with c2 since f1 ≤ fj
and f2 ≤ fk (by definition).

W.l.o.g., we focus on swapping cj with c1. Let δ := dj − d1 ≥ 0 be the difference in depth of the
two leaves. Consider the tree T , where we swap c1 with cj . In particular, swapping the leaves
means that our new weight is w(T ) = f1dj + fjd1 +

∑
i 6=1,j fi · di. We have

w(T ′) =

n∑
i=1

fi · di = f1d1 + fjdj +
∑
i 6=1,j

fi · di

= f1(dj − δ) + fj(d1 + δ) +
∑
i 6=1,j

fi · di

= f1dj + fjd1 + δ(fi − f1) +
∑
i 6=1,j

fi · di

= w(T ) + δ(fi − f1)︸ ︷︷ ︸
≥0

This implies w(T ) ≤ w(T ′). As c2 and ck fulfill the same requirements which we used here, they
can be swapped analogously, without increasing the weight of the resulting tree T . Since we
assumed T ′ was already optimal we have w(T ) = w(T ′), i.e., T is also optimal.

(c) Since an optimal prefix code (that minimizes
∑n

i=1 fi · `i, where `i is the length of the code of
ci) must be constructable from a full binary tree with leaves c1, . . . , cn and optimal weight (we
give that argument further below) we only have to show that our greedy tree has optimal weight
w(T ) =

∑n
i=1 fi · di.

Let Tn be the greedy tree fore c1, . . . , cn. In base case T2 we have just 2 characters and our greedy
tree has just two leaves and a root, which is clearly optimal. Let now n ∈ N. Our hypothesis is
that the claim is true for n− 1 (or less) characters, more specifically we hypothesize that w(Tn−1)
is optimal for any greedy tree Tn−1 with n− 1 characters. Now we want to show that w(Tn), i.e.
the weight of the greedy tree for c1, . . . , cn is optimal as well.

For comparison, let T be an optimal full binary tree for c1, . . . , cn. Further, we assume that c1, c2
are siblings in T , which is not a restriction in terms of the minimal weight that can be achieved
as we showed in part (b). Let di be the depth of ci in T . Let T ′ be the subtree of c3, . . . , cn+1,
where cn+1 is the parent of c1, c2. Let fn+1 = f1 + f2 and let dn+1 = d1 − 1 be the depth of cn+1

in T ′. Then we have

w(T ) =
∑n

i=1 fi · di =
(∑n+1

i=3 fi · di
)

+ f1 · d1 + f2 · d2 − fn+1 · dn+1

= w(T ′) + f1 · d1 + f2 · d2 − fn+1 · dn+1.

= w(T ′) + (f1 + f2) · d1 − (f1 + f2) · (d1 − 1) = w(T ′) + f1 + f2.

Since w(T ) is optimal, it is necessary that the weight w(T ′) of the subtree T ′ is optimal as well
(otherwise w(T ) could be larger by making w(T ′) larger). It is also sufficient that w(T ′) is optimal



so that w(T ) is optimal, since w(T ) = w(T ′) + f1 + f2 depends only on w(T ′) whereas f1, f2 do
not depend on T . So w(T ) is optimal if and only if w(T ′) is optimal.

We already know that w(Tn−1) is an optimal solution for c3, . . . , cn+1 from the hypothesis, thus
w(T ) = w(Tn−1) + (f1 + f2). Note that in the same way as above, by construction of Tn, we also
have w(Tn) = w(Tn−1) + (f1 + f2), thus w(Tn) = w(T ).

Proof that an optimal prefix code can be constructed from a full binary tree with n leaves (not
required): Every prefix code can be considered as a binary tree with leaves c1, . . . , cn. Let us prove
this first. Let ci be the character with the longest codeword of length d. Consider the full and
complete binary tree of depth d.

The codeword of some character cj represents a unique node in that tree: start from the root,
go left for a 0, right for 1, the node you end up corresponds to cj. Then remove all internal
nodes which do not have a descendant that corresponds to some cj. After removal, all leaves must
correspond to some character. Moreover, all nodes corresponding to some cj must be leaves, since
the code is prefix-free.

The optimal prefix code must correspond to a full binary tree. This is because if we have an internal
node with only a single child, we can merge it with its child and thus make the codewords of all
descendant leaves of this node by one bit shorter.


