
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Sample Solution Exercise Sheet 5
Due: Tuesday, 23rd of November, 2021, 4 pm

Exercise 1: Stack with Backup (8 Points)

Consider an (initially empty) stack S where every k operations the content of S is copied for backup
purposes which takes time Θ(|S|).

(a) Given an arbitrary series of push and pop operations on S, what is the amortized cost of an
operation? (2 Points)

(b) Assume we conduct a series of push and pop such that the size of S never exceeds N . Assign
amortized running times (possibly depending on N and k) to the operations that are as small as
possible. Prove your claim. (6 Points)

Sample Solution

(a) The amortized cost per push operation in an arbitrarily long sequence of push operations is
unbounded since S can be arbitrarily large and thus the backup operation arbitrarily expensive.

A bit more precisely, we can argue as follows. Assume that we conduct n operations. In the worst
case there are only push operations, which make the stack largest and thus the corresponding
backups most expensive. The total cost for the push and backup operations is

n+

bn/kc∑
i=1

k · i = n+ k ·
bn/kc∑
i=1

i = n+ k · bn/kc · bn/k + 1c
2

for a c>0
≥ c · n2/k.

So the amortized cost per operation is at least c · n/k (which is unbounded in n).

Remark: In particular, this means that in part (b) we will not be able to give an amortized time
for push that is constant in N , the best we can hope for is c ·N/k for some c > 0.

(b) W.l.o.g., we assume that the true cost of push and pop is 1 and that of backup is |S| (one can
always adjust these constants by some factor). We assign amortized cost of 1 to the pop operation
and a cost of 1 + 2N+1

k to the push operation. We use the accounting method to show that this
is a correct amortized cost assignment.

Let us first see how the account balance changes with given the amortized above. Consider the
case that the current operation does not trigger a backup. Then the amortized cost of 1 for pop is
sufficient to pay for its true cost and the account does not change. For a push operation without
backup, we use 1 to pay for the true cost and pay 2N+1

k to the bank account. If there is a backup
after an operation we take |S| from the account to pay for it (after doing the same as above).

It remains to show that the account is always positive. Let us assume that there are no pop

operations on an empty stack (we argue how to deal with that in a remark at the bottom). Then
at any given operation in our sequence there were always at least as many pushes as pops in that
subsequence, since S is initially empty.

Assume we just executed the nth operation. On one hand, the total number of backups that have
occurred so far is at most dn/ke,1 with a total amount of at most N · dn/ke subtracted from the
account. On the other hand there were at least dn/2e many push operations. Thus the amount
we paid to the account is least

dn2 e · 2 ·
N+1
k ≥ n · N+1

k = (N+1) · nk ≥ N · d
n
k e,

i.e., at least as much as we subtracted. Since this holds after every operation, the account always
stays positive.

Remark: The only problem with pop operations on an empty stack is that the sequence could contain
more push’s than pop’s, which we needed to exploit in our analysis above. Note that whenever we
have such a sequence of pop operations on an empty stack, then the backups occurring during this
sequence are also cheap.

In particular, we assumed that backup is for free in that situation as |S| = 0, so we need not
subtract anything from the account (however, in case we want that backup always has a minimum
constant cost, we can just increase the amortized cost of pop by that constant to pay for it). This
means that backups during periods where we have only pop operations on an empty stack are taken
care of (i.e., the account stays positive).

Now consider the period that starts after a pop operation on an empty stack that is followed by
a push and ends with the operation before the next pop operation on an empty stack. For this
period we can guarantee that there are more push’s than pop’s and we simply apply the analysis
above to show that the account stays positive during these periods as well.

Exercise 2: Dynamic Array with Remove (12 Points)

In the lecture we saw a dynamically growing array that implements the append operation in amortized
O(1) (reads/writes). For an array of size N that is already full, the append operation allocates a new
array of size 2N (β = 2) before inserting an element at the first free array entry.

Additionally, we introduce another operation remove, which writes Null into the last non-empty
entry of the dynamic array. However, by appending many elements and subsequently removing most
of them, the ratio of unused space can become arbitrarily high. Therefore, when the dynamic array
of size N contains N

4 or less elements after remove, we copy each element into a new array of size N
2 .

(a) Given an array of size N which has at least N
2 elements, show that any series of remove operations

has an amortized cost of O(1) (reads/writes) per operation. (4 Points)

(b) Use the potential function method to show that any series of append and remove operations has
amortized cost of O(1) (reads/writes) per operation. Assume that the number of elements n in
the array is initially 0 and assume that the array never shrinks below its initial size N0 (we stop
allocating smaller arrays in that case). (8 Points)

Remarks: You may assume that N is always a power of two. You may also assume that allocating an
empty array is free, only copying elements costs one read and one write for each copied element. If
you do part (b) absolutely correctly you automatically receive all points for part (a).

Sample Solution

(a) We pay 2 coins to the bank for each remove operation (1 coin = 1 read/write operation). When
the number of elements in the array reaches N

4 (down from N
2) we conducted exactly N

4 remove

operations and have 2 · N4 = N
2 coins on our bank account.

1Note that this is true even if we assume that a backup can occur with the very first operation. In fact, if the first
backup happens only after k operations we could round down to bn/kc.

We use this amount to copy (one read and subsequently one write) each element into the new,
smaller array for “free” (we make N

4 reads and N
4 writes). Each remove operation costs 1 coin (1

write) plus 2 coins (paid to bank) which makes an amortized cost of 3 coins = O(1) (read/writes).

Afterwards, the newly allocated array is again half full and the argument can be repeated.

(b) We define a potential function Φ(n,N) that is small when it contains exactly N
2 elements, and

large when the number of elements approaches N or N/4 respectively, in order to pay for the
imminent increase or decrease of the array size:

Φ(n,N) := 2 · |2n−N |.

Since we use absolute values, we obviously have Φ(n,N) ≥ 0 for any values n,N . For the amortized
costs we make some case distinctions. We start with the amortized cost an,N of append:

Case n = N :

aN,N = 1 + 2N + Φ(N+1, 2N)− Φ(N,N)

= 1 + 2N + 2(2(N+1)− 2N)− 2(2N −N) = 5

Case n < N , n ≥ N/2:

an,N = 1 + Φ(n+1, N)− Φ(n,N)

= 1 + 2(2(n+1)−N)− 2(2n−N) = 1 + 4 = 5

Case n < N , n < N/2:

an,N = 1 + Φ(n+1, N)− Φ(n,N)

= 1 + 2(N − 2(n+1))− 2(N − 2n) = 1− 4 ≤ 0

Now the amortized cost rn,N of remove:

Case n = N/4+1:

rN/4+1,N = 1 +N/2 + Φ(N/4, N/2)− Φ(N/4+1, N)

= 1 +N/2 + 2(N/2− 2(N/4))− 2(N − 2(N/4+1)) = 1 +N/2−N + 4 ≤ 5

Case n > N/4+1, n ≤ N/2:

rn,N = 1 + Φ(n−1, N)− Φ(n,N)

= 1 + 2(N − 2(n−1))− 2(N − 2n) = 1 + 4 = 5

Case n > N/4+1, n > N/2:

rn,N = 1 + Φ(n−1, N)− Φ(n,N)

= 1 + 2(2(n−1)−N)− 2(2n−N) = 1− 4 ≤ 0

