
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Sample Solution Exercise Sheet 6
Due: Tuesday, 30th of November, 2021, 4 pm

Exercise 1: Fibonacci Heap - Operations (4 Points)

Consider the following Fibonacci heap with marked nodes shown in gray and two dedicated nodes
u, v. Give the state of the Fibonacci heap after conducting the operation Decrease-Key(v, 8). Then
conduct Decrease-Key(u, 5) on the resulting Fibonacci heap and give the state of it.

3

4

96

12

13

17 11

15

7

16 18

14

19

vu

10

Sample Solution

After Decrease-Key(v, 8):

3

4

613

17

7

16 18

14

19

u

15

v
9

1210

8

After Decrease-Key(u, 5):

3 46

137

16 18

14

19

u

15

v
9

1210

8 5

Exercise 2: Fibonacci Heap - Questions (6 Points)

Suppose we “simplify” Fibonacci heaps such that we do not mark any nodes that have lost a child
and consequentially also do not cut marked parents of a node that needs to be cut out due to a
decrease-key-operation. Is the amortized running time

(a) ... of the decrease-key-operation still O(1)? (2 Points)

(b) ... of the delete-min-operation still O(log n)? (4 Points)

Explain your answers.

Sample Solution

Two reasonable answers would be as follows.

(a) Yes. Not having to cut all your marked ancestor nodes only makes decrease-key faster. In fact
each individual decrease-key operation has now runtime O(1). (2 Points)

(b) No. The reason is that we loose the recursive property that a given node with rank i has i children
that have at least ranks i− 2, i− 3, ..., respectively. This was required to show that each tree of a
given rank has a minimum size of Fi+2 (where F is the Fibonacci series) which grows exponential
in i. Consequentially the maximum rank can not be too large, just O(log n), as a tree with higher
rank would require more than n nodes.

Now, if a node can loose an arbitrary number of children without being cut, the above property
can not be guaranteed anymore. In particular, in extreme cases we could end up with a tree with
rank n− 1. Since delete-min has amortized runtime linear in the maximum rank, it will have a
higher amortized running time (i.e., ω(log n)). (4 Points)

Exercise 3: Fibonacci Heap - Delete (10 Points)

We want to augment the Fibonacci heap data structure by adding an operation delete(v) to delete a
node v (given by a direct pointer). The operation should have an amortized running time of O(log n).
Describe the operation delete(v) in sufficient detail and prove the correctness and amortized running
time.

Remark: You can use the same potential function as for the standard Fibonacci heap data structure.
Note however that after conducting delete(v) the Fibonacci heap must still be a list of heaps with
maximum rank D(n) ∈ O(log n) and with a dedicated pointer to the minimum key.

Sample Solution

“Indirect” Implementation: Arguably, the simplest solution is to implement delete(v) using (a
constant number of) our preexisting standard operations for the Fibinacci heap. For this we first
execute a decrease-key(v,−∞), where we assume that −∞ is special key smaller than every other
key in the heap. Then we conduct a delete-min. Afterwards only the node v in the Fibonacci heap
will be gone.

The correctness is clear. The actual running time tdelete of delete is composed of that of the two
operations tdelete = tdecrease-key + tdelete-min. We can trace the amortized running time adelete of the
composed operation delete back to the sum of the two amortized runtimes of the single operations
adecrease-key and adelete-min as well. Let Φafter and Φbefore be the potential before and after executing

delete. Then we have

adelete = tdelete + Φafter − Φbefore

= tdelete-min + tdecrease-key + Φafter del-min − Φbefore dec-key

= tdelete-min + tdecrease-key + Φafter del-min − Φafter dec-key + Φafter dec-key − Φbefore dec-key

= tdelete-min + tdecrease-key + Φafter del-min − Φbefore del-min + Φafter dec-key − Φbefore dec-key

= tdelete-min + Φafter del-min − Φbefore del-min + tdecrease-key + Φafter dec-key − Φbefore dec-key

= adelete-min + adecrease-key ∈ O(log n).

“Direct” Implementation: We try to design the delete(v) operation to maintain the same con-
ditions of the Fibonacci heap. Specifically, we ensure in the following that each node looses at most
one rank by loosing a child.

We first cut out v and reinsert all child-heaps of v into the rootlist (not v itself). Since v’s former
parent now lost a child, we run the cascading cut procedure on v’s former parent, meaning that all
successive marked ancestors of v are cut out and reinserted into the rootlist. The closest previously
unmarked ancestor of v is marked.

Finally we have to consider a special case that forces us to do another step. If the node v to be
deleted is the current minimum, then we would have to go through the whole rootlist to find the new
minimum.

Instead we run the consolidate routine like for delete-min (which also records the new min key). The
reason for that is technical: we have to shrink the size of the rootlist R back down to D(n) in order
to “pay” that costly search (included in the consolidate) with the associated decrease in potential.

Runtime: The actual cost of our implementation of delete(v) is composed of the following compo-
nents. The cutting and reinserting of the children of v can be done in actual O(1) using the linked
list implementation. The next costly step is the cascading cuts procedure, which takes O(mv) steps,
where mv is the number of successively marked ancestors of v.

Finally, let us assume that we delete the current minimum v. Then we have to consolidate, which
takes time to the order of O(D(n) + |H.rootlist|), where |H.rootlist| is the size of the rootlist and
D(n) the maximum rank of a Fibonacci heap of size n.

Overall, we have the true cost of tdelete = mv +D(n) + |H.rootlist|. Note that we neglect constants
which one can always adjust in the potential function to accommodate the true cost. The potential
Φ = R + 2M (where R is the number of trees in the rootlist and m is the number of nodes) of the
Fibonacci heap changes as follows:

Rafter ≤ Rbefore + D(n−1)− |H.rootlist| now at most D(n−1) trees in rootlist

Mafter ≤Mbefore − (mv − 1) mv ancestors loose marks, but one mark might be added back

Φafter ≤ Φbefore + D(n−1)− |H.rootlist| − 2(mv − 1).

The difference Φafter−Φbefore can be used to offset our true costs tdelete = mv +D(n)+ |H.rootlist|:

adelete = tdelete + Φafter − Φbefore

= mv + D(n) + |H.rootlist|+ Φafter − Φbefore

≤ D(n) + t2 + |H.rootlist|+ D(n−1)− |H.rootlist| − 2(mv − 1)

≤ D(n) + D(n−1) ∈ O(log n).

