
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger, P. Schneider

Algorithm Theory

Sample Solution Exercise Sheet 7
Due: Tuesday, 7th of December, 2021, 4 pm

Exercise 1: Vertex Cover Variant (10 Points)

Given an undirected graph G = (V,E), a subset U ⊆ V of nodes and a capacity function c : U → N,
we want to cover every edge with the nodes in U , where every node u ∈ U can cover up to c(u) of its
incident edges.
Formally, we are interested in the existence of an assignment f : E → U such that for all e ∈ E we
have f(e) ∈ e and for all u ∈ U it holds |{e ∈ E | f(e) = u}| ≤ c(u).

Devise an efficient algorithm to determine whether or not such an assignment exists and explain its
runtime.

Sample Solution

We formulate the problem as a flow problem. We flow-network looks as follows: We have a source
node s, a target node t, one node for each u ∈ U and one node for each e ∈ E. We have the following
edges:

• An edge from s to each u ∈ U with capacity c(u)

• For any e = {u, v} ∈ E an edge from u to e and one from v to e with capacity 1 each (or any
integer capacity ≥ 1)

• An edge from each e ∈ E to t with capacity 1

The problem is solvable iff the maximum flow equals m = |E|.

The network has integer capacities, the maximum flow is at most m and the network has O(m) edges,
so computing a maximum flow with Ford-Fulkerson takes O(m2).

Exercise 2: Cycle Elimination (10 Points)

Let G = (V,E, c) be a directed graph with capacity function c : E → N and let s, t ∈ V . We allow G
to contain cycles. We now want to build a DAG (directed acyclic graph) G′ = (V,E′, c′) with E′ ⊆ E
and c′(e) = c(e) for e ∈ E′ (i.e., we obtain G′ by deleting edges from G) that has the same minimum
s-t cut capacity as G.

Give an efficient algorithm to compute such a graph G′, argue that your algorithm is correct and
analyze its runtime.

Sample Solution

We compute a maximum s-t flow of G. Assume there is a flow going along a cycle Z. Let e ∈ Z be
the edge with the smallest flow value among all edges in Z. We set the flow on e to 0 and reduce the
flow on all other edges in Z by the corresponding amount. This way, we obtain a valid flow in G of
the same size without any flow going along cycles. We now obtain G′ by deleting all edges from G
with a flow value of 0. G′ is a DAG with the same maximum s-t flow and hence the same minimum
s-t cut capacity as G.
Computing a flow on G takes O(m · C) where C is the size of a minimum cut in G. Finding a “flow
cycle” and changing the flow in it takes O(m). After O(m) iterations, all such cycles are eliminated.
The total runtime is hence O(m · C + m2).

