Algorithm Theory Sample Solution Exercise Sheet 9

Due: Tuesday, 21st of December, 2021, 4 pm

Exercise 1: Hypergraph Matching

A hypergraph is a generalization of an undirected graph in which edges consist of arbitrary subsets of vertices. That is, a hypergraph consists of a set of nodes V and a set of edges $E \subseteq \mathcal{P}(V)$. A hypergraph is called k-uniform if each edge has size k, i.e., contains exactly k nodes. For example, a simple, undirected graph is a 2 -uniform hypergraph.
A matching of a hypergraph is a set of edges which are pairwise disjoint. The definitions of a maximal and maximum matching are extended to hypergraphs in the obvious way.
(i) Show that a maximum matching of a k-uniform hypergraph has size at most $\left\lfloor\frac{n}{k}\right\rfloor$.
(ii) For an arbitrary $k \geq 2$, provide a k-uniform hypergraph G and a maximal matching M such that $|M|=\frac{\left|M^{*}\right|}{k}$ where M^{*} is a maximum matching.
(iii) Show that for any maximal matching M of a k-uniform hypergraph we have $|M| \geq \frac{\left|M^{*}\right|}{k}$ where M^{*} is a maximum matching.

Sample Solution

(i) If a matching contains ℓ edges, the graph contains at least $\ell \cdot k$ nodes. Hence, the number of edges can not be larger than $\frac{n}{k}$.
(ii) $G=(V, E)$
$V=\left\{v_{i j} \mid 1 \leq i, j \leq k\right\}$
$E=\left\{\left\{v_{i 1}, \ldots, v_{i k}\right\} \mid 1 \leq i \leq k\right\} \cup\left\{\left\{v_{11}, \ldots, v_{k 1}\right\}\right\}$
$M=\left\{\left\{v_{11}, \ldots, v_{k 1}\right\}\right\}$
$M^{*}=\left\{\left\{v_{i 1}, \ldots, v_{i k}\right\} \mid 1 \leq i \leq k\right\}$
(iii) Let e_{1}, \ldots, e_{ℓ} be the edges of M. For each $i=1, \ldots, \ell$ let $S_{i}:=\left\{e \in E \mid e \cap e_{i} \neq \emptyset\right\}$. As M is maximal, we have $S_{1} \cup \ldots \cup S_{\ell}=E$. We also have $\left|S_{i} \cap M^{*}\right| \leq k$, because each edge in $S_{i} \cap M^{*}$ contains one node of e_{i} and $\left|e_{i}\right|=k$. We therefore have

$$
\left|M^{*}\right|=\left|E \cap M^{*}\right|=\left|\left(S_{1} \cap M^{*}\right) \cup \ldots \cup\left(S_{\ell} \cap M^{*}\right)\right| \leq \ell \cdot k=k|M|
$$

Exercise 2: Randomization

Assume you are given a randomized algorithm \mathcal{A} that given a graph G with n nodes and a maximum matching of size s, computes an integer $k \leq s$ in time $T(n)$ such that with probability at least $p(n)$ we have $k=s$.
Give an algorithm with running time $\mathcal{O}\left(p(n)^{-1} \cdot T(n) \cdot \log n\right)$ that computes the size of a maximum matching of a graph with n nodes with probability at least $1-\frac{1}{n}$. Prove the success probability.

Sample Solution

We repeat \mathcal{A} for $p^{-1} \ln n$ times and take the maximum of all outputs. The probability that the size of a maximum matching is not among the outputs is at most

$$
(1-p)^{p^{-1} \ln n} \leq e^{-\ln n}=\frac{1}{n}
$$

