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Exercise 1: Randomized Dominating Set (20 Points)

Let G = (V,E) be an undirected graph. A set D ⊆ V is called a dominating set if each node in V is
either contained in D or adjacent to a node in D. The problem is to find a dominating set which is as
small as possible (note that D = V is trivially a dominating set). However, the problem of finding a
minimum dominating set (or even a constant approximation) is NP-hard. In this exercise we present
a randomized algorithm for d-regular graphs (i.e., graphs in which each node has exactly d neighbors)
that computes a O(log n)-approximation of a minimum dominating set.

Let c > 0.

Algorithm 1 domset(G)

1: D = ∅
2: Each node joins D independently with probability p := min{1, (c+2) lnn

d+1 }
3: Each node that is neither in D nor has a neighbor in D joins D
4: return D

For simplicity, in all tasks you may assume that (c+2)·lnn
d+1 ≤ 1, i.e., that p = (c+2)·lnn

d+1 .

(a) Explain the runtime of domset. (1 Point)

(b) Show that domset returns a dominating set with an expected size of O
(
n logn
d

)
.

Hint: Use the inequality (1− x) ≤ e−x. (4 Points)

(c) Show that after line 2 of domset, D has size O
(
n logn
d

)
with probability at least 1− 1

nc+1 .

Hint: For v ∈ V , let Xv be the random variable with Xv = 1 if v joins D in line 2 and Xv = 0
else. Now use Chernoff’s Bound. (3 Points)

(d) Show that with probability at least 1− 1
nc+1 , no node joins D in line 3 of domset. (3 Points)

(e) Conclude that domset returns a dominating set of size O
(
n logn
d

)
with probability at least 1− 1

nc .

(1 Point)

(f) Someone might now say: “Why not doing parts (c)-(e) like this: Let Xv be the random variable
with Xv = 1 if v is in D (at the end of the algorithm) and Xv = 0 else. Then use Chernoff’s
Bound.”

What would you respond?

Hint: Read the slide from the lecture about Chernoff Bounds carefully. (1 Point)

(g) Finally, show that domset computes an O(log n)-approximation of a minimum dominating set
(i.e., D ∈ O(|D∗| log n) where D∗ is a minimum dominating set) with probability at least 1− 1

nc .
(3 Points)



We now have shown that domset is a Monte Carlo algorithm for the problem “O(log n) minimum
dominating set approximation”. That is, domset has a fixed deterministic runtime and a probabilistic
correctness guarantee.

(h) Describe a Las Vegas algorithm for “O(log n) minimum dominating set approximation”. That
is, your algorithm must always return the correct answer and its runtime must be polynomial
in expectation and w.h.p. Prove that your algorithm has these properties. (4 Points)

Sample Solution

(a) Line 2 takes O(n) and line 3 O(nd) (for each node we must check its neighbors), so the runtime
is O(nd).

(b) Line 3 ensures that D is a dominating set. Let v ∈ V .

Pr(v ∈ D) = Pr(v joins D in line 2) + Pr(v joins D in line 3)

=
(c+ 2) lnn

d+ 1
+

(
1− (c+ 2) lnn

d+ 1

)d+1

≤ (c+ 2) lnn

d+ 1
+ e−(c+2) lnn

=
(c+ 2) lnn

d+ 1
+

1

nc+2

Now let Xv the random variable with Xv = 1 if v ∈ D and Xv = 0 else.

We obtain

E[|D|] = E[
∑
v∈V

Xv]
(∗)
=
∑
v∈V

E[Xv] =
∑
v∈V

Pr(v ∈ D) ≤ n ·
(

(c+ 2) lnn

d+ 1
+

1

nc+2

)
=

(c+ 2)n lnn

d+ 1
+

1

nc+1
≤ (c+ 2) · n lnn

d+ 1
+ 1 = O

(
n log n

d

)
.

At (∗) we used linearity of expectation (which holds also for non-independent random variables).

(c) For repetition: If X1, . . . , Xn is a sequence of independent 0-1 random variables, X =
∑
Xi and

µ = E[X], then for any δ > 0 we have

Pr(X ≥ (1 + δ)µ) ≤ e−
min{δ,δ2}

3
µ .

For each node v let Xv be the random variable with Xv = 1 if v joins D in line 2 and Xv = 0 else
and let X =

∑
Xv. We have Pr(Xv = 1) = (c+2) lnn

d+1 and hence µ = E[X] = (c+2)n·lnn
d+1 .

For δ = 3 we obtain

Pr(X ≥ (1 + δ)µ) ≤ e−µ = e−
(c+2)n lnn

d+1 ≤ e−(c+2) lnn =
1

n(c+2)
≤ 1

nc+1

So with probability at least 1− 1
nc+1 we have |D| ≤ 4µ = O

(
n logn
d

)
.

(d) v joins D in line 3 if neither v nor its d neighbors join D in line 2. We obtain

Pr(v joins D in line 3) =

(
1− (c+ 2) lnn

d+ 1

)d+1

≤ e−(c+2) lnn =
1

nc+2

A union bound over all nodes yields that the probability that some node joins D in line 3 is at
most 1

nc+1 .

(e) The probability that at least one of the conditions in (c) and (d) are not true is at most 2
nc+1 ≤ 1

nc .

(f) These random variables are not pairwise independent.



(g) For any dominating set D′ we have |D′| ≥ n
d+1 . So by part (e), w.h.p., D is at most O(log n)

times larger than a minimum dominating set.

(h) We repeat domset until it returns a set of size O
(
n logn
d

)
. Running domset and checking the

result takes O(n+m). By part (e) we know that w.h.p., one run is sufficient.

For the expected runtime, we observe that the number of runs until the first success is geometrically
distributed with parameter p ≥ 1− 1

nc . The expected number of trials is hence

1

p
≤ 1

1− 1
nc

n→∞−→ 1 .

Therefore, our algorithm always outputs a correct solution (because we repeat domset until it
does) and has a runtime of O(n+m) in expectation and with high probability.


