

Algorithm Theory Sample Solution Exercise Sheet 11

Due: Tuesday, 18th of January, 2022, 4 pm

Exercise 1: Randomized Coloring

 $(20 \ Points)$

Let G = (V, E) be a simple, undirected graph with maximum degree Δ . A vertex coloring of a graph is an assignment of colors to the vertices such that adjacent vertices have different colors. More formally, a coloring ϕ is a mapping $\phi : V \to C$ from V to a color space C such that $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$.

Consider the following randomized algorithm to compute a coloring of G with 2Δ colors, i.e., a coloring $\phi: V \to \{1, \ldots, 2\Delta\}$.

Each uncolored node v assigns itself a tentative color $c_v \in \{1, \ldots, 2\Delta\}$ uniformly at random. If v has no neighbor with the same (tentative or permanent) color, it keeps c_v permanently. Otherwise it uncolors itself again. Repeat until all nodes are colored. In pseudocode:

Algorithm 1 color(G)1: for $v \in V$ do $\phi(v) = \bot$ 2: \triangleright each node is initially uncolored 3: while there is a v with $\phi(v) = \bot \mathbf{do}$ for each u with $\phi(u) = \bot$ independently do 4: choose $c_u \in \{1, \ldots, 2\Delta\}$ uniformly at random 5: 6: for each u with $\phi(u) = \bot$ do if u has no neighbor w with $c_u = c_w$ or $c_u = \phi(w)$ then 7: 8: $\phi(u) := c_u$

We call one run of the while-loop in line 3 a round.

- (a) Show that for each round and each uncolored node u, the probability that the condition in line 7 is true (i.e., u permanently chooses a color) is at least 1/2. (7 Points)
- (b) Show that in each round, in expectation, the number of uncolored nodes is at least halved. (4 Points)

Hint: Use part (a).

(c) Show that color terminates in $O(\log n)$ rounds with high probability. That is, for a given c > 0, color terminates in $O(\log n)$ rounds with probability at least $1 - \frac{1}{n^c}$. (9 Points) Hint: Use part (a).

Sample Solution

(a) Consider an uncolored node u and a neighbor w. The probability that $c_u = c_w$ or $c_u = \phi(w)$ is $\frac{1}{2\Delta}$. With a union bound it follows that the probability that u can not keep its color is at most $\frac{\Delta}{2\Delta} = \frac{1}{2}$.

(b) Let U be the set of uncolored nodes at the beginning of the round. For each $u \in U$, let $X_u = 1$ if u remains uncolored and $X_u = 0$ if u gets colored. Then the expected number of nodes remaining uncolored is

$$E[\sum_{u \in U} X_u] = \sum_{u \in U} E[X_u] = \sum_{u \in U} \Pr(u \text{ remains uncolored}) \le \frac{|U|}{2}$$

(c) The probability that u is uncolored after $(c+1)\log n$ rounds is at most $\frac{1}{2^{(c+1)\log n}} = \frac{1}{n^{c+1}}$. A union bound over all nodes yields that the probability that there is an uncolored node after $(c+1)\log n$ rounds is at most $\frac{n}{n^{c+1}} = \frac{1}{n^c}$.

Alternative solution: W.l.o.g. we can assume that $c \ge 1$ (otherwise we can choose $c' = \max\{c, 1\}$ and obtain an even better bound). We call a round successful if at least half of the uncolored nodes keep their color. Note that at the latest after $\log n$ successful rounds, all nodes are permanently colored. Let X_i be the random variable with $X_i = 1$ if round *i* is successful and $X_i = 0$ otherwise. From (a) follows that $\Pr(X_i = 1) \ge 1/2$. Let $X = \sum_{i=1}^{16 c \log n} X_i$. We have $\mu := E[X] \ge 8c \log n$. Chernoff's Bound yields

$$\Pr(X \le \log n) \le \Pr(X \le 4c \log n) \le \Pr(X \le (1 - 1/2)\mu) < e^{-\mu/8} \le e^{-c \log n} = \frac{1}{n^c}$$

So with high probability, there are at least $\log n$ successful rounds among the first $16c \log n = O(\log n)$ rounds.