Algorithm Theory Sample Solution Exercise Sheet 11

Due: Tuesday, 18th of January, 2022, 4 pm

Exercise 1: Randomized Coloring

Let $G=(V, E)$ be a simple, undirected graph with maximum degree Δ. A vertex coloring of a graph is an assignment of colors to the vertices such that adjacent vertices have different colors. More formally, a coloring ϕ is a mapping $\phi: V \rightarrow C$ from V to a color space C such that $\phi(u) \neq \phi(v)$ if $\{u, v\} \in E$.

Consider the following randomized algorithm to compute a coloring of G with 2Δ colors, i.e., a coloring $\phi: V \rightarrow\{1, \ldots, 2 \Delta\}$.
Each uncolored node v assigns itself a tentative color $c_{v} \in\{1, \ldots, 2 \Delta\}$ uniformly at random. If v has no neighbor with the same (tentative or permanent) color, it keeps c_{v} permanently. Otherwise it uncolors itself again. Repeat until all nodes are colored. In pseudocode:

```
Algorithm 1 color \((G)\)
    for \(v \in V\) do
        \(\phi(v)=\perp \quad \triangleright\) each node is initially uncolored
    while there is a \(v\) with \(\phi(v)=\perp\) do
        for each \(u\) with \(\phi(u)=\perp\) independently do
            choose \(c_{u} \in\{1, \ldots, 2 \Delta\}\) uniformly at random
        for each \(u\) with \(\phi(u)=\perp\) do
            if \(u\) has no neighbor \(w\) with \(c_{u}=c_{w}\) or \(c_{u}=\phi(w)\) then
                \(\phi(u):=c_{u}\)
```

We call one run of the while-loop in line 3 a round.
(a) Show that for each round and each uncolored node u, the probability that the condition in line 7 is true (i.e., u permanently chooses a color) is at least $1 / 2$.
(7 Points)
(b) Show that in each round, in expectation, the number of uncolored nodes is at least halved. (4 Points)
Hint: Use part (a).
(c) Show that color terminates in $O(\log n)$ rounds with high probability. That is, for a given $c>0$, color terminates in $O(\log n)$ rounds with probability at least $1-\frac{1}{n^{c}}$.
(9 Points)
Hint: Use part (a).

Sample Solution

(a) Consider an uncolored node u and a neighbor w. The probability that $c_{u}=c_{w}$ or $c_{u}=\phi(w)$ is $\frac{1}{2 \lambda}$. With a union bound it follows that the probability that u can not keep its color is at most $\frac{\Delta}{2 \Delta}=\frac{1}{2}$.
(b) Let U be the set of uncolored nodes at the beginning of the round. For each $u \in U$, let $X_{u}=1$ if u remains uncolored and $X_{u}=0$ if u gets colored. Then the expected number of nodes remaining uncolored is

$$
E\left[\sum_{u \in U} X_{u}\right]=\sum_{u \in U} E\left[X_{u}\right]=\sum_{u \in U} \operatorname{Pr}(u \text { remains uncolored }) \leq \frac{|U|}{2}
$$

(c) The probability that u is uncolored after $(c+1) \log n$ rounds is at most $\frac{1}{2^{(c+1) \log n}}=\frac{1}{n^{c+1}}$. A union bound over all nodes yields that the probability that there is an uncolored node after $(c+1) \log n$ rounds is at most $\frac{n}{n^{c+1}}=\frac{1}{n^{c}}$.

Alternative solution: W.l.o.g. we can assume that $c \geq 1$ (otherwise we can choose $c^{\prime}=\max \{c, 1\}$ and obtain an even better bound). We call a round successful if at least half of the uncolored nodes keep their color. Note that at the latest after $\log n$ successful rounds, all nodes are permanently colored. Let X_{i} be the random variable with $X_{i}=1$ if round i is successful and $X_{i}=0$ otherwise. From (a) follows that $\operatorname{Pr}\left(X_{i}=1\right) \geq 1 / 2$. Let $X=\sum_{i=1}^{16 c \log n} X_{i}$. We have $\mu:=E[X] \geq 8 c \log n$. Chernoff's Bound yields

$$
\operatorname{Pr}(X \leq \log n) \leq \operatorname{Pr}(X \leq 4 c \log n) \leq \operatorname{Pr}(X \leq(1-1 / 2) \mu)<e^{-\mu / 8} \leq e^{-c \log n}=\frac{1}{n^{c}}
$$

So with high probability, there are at least $\log n$ successful rounds among the first $16 c \log n=$ $O(\log n)$ rounds.

