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Exercise 1: Minimum Vertex Cover Approximation (20 Points)

Let G = (V,E) be an undirected, unweighted graph. Consider the following algorithms that give
approximate solutions to the minimum vertex cover problem.

Algorithm 1 alg1

1: S ← ∅ . create an empty set
2: while E 6= ∅ do
3: pick some edge {u, v} ∈ E
4: S ← S ∪ {u, v}
5: remove edges incident to u or v from E

6: return S

Algorithm 2 alg2

1: S ← ∅ . create an empty set
2: while E 6= ∅ do
3: pick vertex v ∈ V of maximal degree
4: S ← S ∪ {v}
5: remove edges incident to v from E

6: return S

(a) Show that alg1 and alg2 output valid vertex covers. (3 Points)

(b) Argue why alg1 provides a 2-approximation of the minimum vertex cover problem. (3 Points)

Hint: You can use results that we proved in the lecture.

(c) Argue why alg2 provides a O(log n)-approximation of the minimum vertex cover problem. (5 Points)

Hint: You can use results that we proved in the lecture.

(d) Show that the solution provided by alg2 is only a Θ(log n) approximation for some graphs.
(9 Points)

Hint: Give a bipartite graph with node set V = L ∪ R and |L| = k and |R| = Θ(k log k), where
alg2 outputs R but the best solution would be L.

Sample Solution

(a) Termination: Both algorithms eventually terminate with E = ∅, since in each iteration of the
loop we remove at least one edge from E. This is obvious for alg1. In an iteration of alg2, we
must pick a node v with deg(v) > 0 in line 4, as otherwise E = ∅ already. Therefore, v has at
least one incident edge that is removed in line 5.

Correctness: In both algorithms, every edge that is removed from E (in either algorithm) is
covered by some endpoint that is added to the vertex cover S as can be seen in lines 4 and 5. And
since every edge gets removed eventually, the algorithms output vertex covers.

(b) The edges we pick in line 3 clearly form a maximal matching, call it M . We have seen in the
lecture that the minimum vertex cover (call it S∗) must be at least as large as any matching,
in particular |S∗| ≥ |M | (remark: the idea was that one endpoint of each matching edge must
necessarily be in any vertex cover). Since we add both endpoints of each edge in M , the vertex
cover S we obtain has size at most |S| = 2|M | ≤ 2|S∗|.



(c) The vertex cover problem can be seen as a set cover problem, where the groundset is the set of
edges E, and the family of sets S ⊆ 2E are sets of incident edges of any node (call those I(v) ⊆ E,
for v ∈ V ). So more formally we define S = {I(v) | v ∈ V }.
Our greedy approach to solve set cover was to pick in each step the set that covers the most, yet
uncovered, elements from the groundset. That is exactly what happens in alg2, where we always
choose the node with highest degree in the remaining set of edges.

In the lecture we showed that this greedy approach gives a set cover that is at most O(log n) times
worse than the best set cover.

(d) For simplicity, let k be a power of two. Let L consist of k nodes and let R = R1 ∪ · · · ∪ R` with
disjoint sets of nodes Ri, |Ri| = k/2 and ` = log2(k) − 1. It is clear that |R| = Θ(k log k). We
arrange the nodes in L and the Ri each in a column from top to bottom (c.f., image below).

We connect L and the Ri with edges as follows. We form a complete bipartite graph between
L and R1. The we form complete bipartite graphs with the top half of nodes in L and the top
half of nodes of R2 and do the same with the respective bottom halves of L and R2. In general
we divide L and Ri in 2i-th quantiles, whereas the respective quantiles form pairwise complete
bipartite graphs. This is roughly outlined by the following picture.
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Now the degree of every node in R1 is k whereas each node in L has degree k/2+k/4+k/8+· · ·+1 <
k. That means the greedy algorithm first chooses all nodes in R1. After removing those and the
incident edges all nodes in L have degree < k/2 wheres those in R2 have degree k/2. So next we
remove all nodes of R2. This continues until all nodes in R are removed and there are no more
edges left. Obviously, the best solution would be L, which is by a factor Θ(log k) smaller. Since
n ∈ Θ(k log k) we have that Θ(log k) = Θ(log(n/ log k)) = Θ(logn− log log k) = Θ(log n).


