

Theoretical Computer Science - Bridging Course Exercise Sheet 7

Due: Sunday, 19th of December 2021, 23:59 pm

Exercise 1: O-Notation Formal Proofs

(1+2+3 Points)

Roughly speaking, the set $\mathcal{O}(f)$ contains all functions that are not growing faster than the function f when additive or multiplicative constants are neglected. Formally:

$$g \in \mathcal{O}(f) \iff \exists c \ge 0, \exists M \in \mathbb{N}, \forall n \ge M : g(n) \le c \cdot f(n)$$

For the following pairs of functions, state whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin , though).

(a)
$$f(n) = 100n$$
, $g(n) = 0.1 \cdot n^2$

(b)
$$f(n) = \sqrt[3]{n^2}, \ q(n) = \sqrt{n}$$

(c)
$$f(n) = \log_2(2^n \cdot n^3), g(n) = 3n$$

Hint: You may use that $\log_2 n \leq n$ for all $n \in \mathbb{N}$.

Exercise 2: Sort Functions by Asymptotic Growth (5 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

$\log_2(n!)$	\sqrt{n}	2^n	$\log_2(n^2)$
3^n	n^{100}	$\log_2(\sqrt{n})$	$(\log_2 n)^2$
$\log_{10} n$	$10^{100} \cdot n$	n!	$n \log_2 n$
$n \cdot 2^n$	n^n	$\sqrt{\log_2 n}$	n^2

Exercise 3: The class \mathcal{P}

 $(1+2+3+3 \ Points)$

Show that the following languages (\cong problems) are in the class \mathcal{P} by giving an algorithm that requires polynomial time in the input size. Use the \mathcal{O} -notation to bound the run-time of your algorithm. Since it is relatively easy (i.e., feasible in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider well-formed inputs.

- (a) Palindrome := $\{w \in \{0,1\}^* \mid w \text{ is a Palindrome}\}$
- (b) List := $\{\langle A, c \rangle \mid A \text{ is a list of numbers that contains } x, y \text{ such that } x + y = c\}.$
- (c) 3-CLIQUE := $\{\langle G \rangle \mid G \text{ has a } clique \text{ of size at least } 3\}$
- (d) 17-DOMINATINGSET := $\{\langle G \rangle \mid G \text{ has a dominating set of size at most } 17\}$

Remarks:

• You may assume that $\langle A \rangle$ is an array.

- A dominating set of a graph G=(V,E) is a subset $D\subseteq V$ such that for every vertex $v\in V$: $v\in D$ or v adjacent to a node $u\in D$.
- A clique of a graph G=(V,E) is a subset $Q\subseteq V$ such that for all $u,v\in Q:\{u,v\}\in E.$