University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn S. Faour

Theoretical Computer Science - Bridging Course Exercise Sheet 8

Due: Sunday, 9th of January 2022, 23:59 pm

Exercise 1: The Class \mathcal{P}

(2+2 Points)

 \mathcal{P} is the set of languages which can be decided by an algorithm whose runtime can be bounded by p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that the following languages (\cong problems) are in the class \mathcal{P} . Since it is typically easy (i.e. feasible in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider well-formed inputs. Use the \mathcal{O} -notation to bound the run-time of your algorithm.

- (a) 4-CLIQUE := $\{\langle G \rangle \mid G \text{ has a } clique \text{ of size at least } 4\}$
- (b) 5-VertexCover := $\{\langle G \rangle \mid G \text{ has a } vertex \ cover \ of size at most 5}\}.$

Remarks:

- In both problems G is an undirected, simple graph.
- A clique in a graph G = (V, E) is a set $C \subseteq V$ such that for all $u, v \in C : \{u, v\} \in E$.
- A vertex cover of G = (V, E) is a subset $C \subseteq V$ of nodes, such that for all $\{u, v\} \in E$ it holds that $u \in C$ or $v \in C$.

Exercise 2: The Class \mathcal{NP}

(3+3 Points)

Show that the following problems (languages) are in class \mathcal{NP} .

- (a) Given a graph G = (V, E) and an integer k, it is required to determine whether G contains a clique of size at least k, hence consider the following problem: $\text{CLique} := \{\langle G, k \rangle \mid G \text{ has a clique of size at least } k \}.$
- (b) A hitting set $H \subseteq \mathcal{U}$ for a given universe \mathcal{U} and a set $S = \{S_1, S_2, \dots, S_m\}$ of subsets $S_i \subseteq \mathcal{U}$, fulfills the property $H \cap S_i \neq \emptyset$ for $1 \leq i \leq m$ (H 'hits' at least one element of every S_i).

Given a universe set \mathcal{U} , a set S of subsets of \mathcal{U} , and a positive integer k, it is required to determine whether \mathcal{U} contains a hitting set of size at most k, hence consider the following problem: HITTINGSET:= $\{\langle \mathcal{U}, S, k \rangle \mid \text{universe } \mathcal{U} \text{ has subset of size } \leq k \text{ that } hits \text{ all sets in } S \subseteq 2^{\mathcal{U}} \}$.

Exercise 3: The Class \mathcal{NPC}

(5+5 Points)

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2 . Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f: \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1^* : s \in L_1 \iff f(s) \in L_2.$$

The power set $2^{\mathcal{U}}$ of some ground set \mathcal{U} is the set of all subsets of \mathcal{U} . So $S \subseteq 2^{\mathcal{U}}$ is a collection of subsets of \mathcal{U} .

Language L is called \mathcal{NP} -hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

$$L \text{ is } \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$$

The reduction relation $'\leq_p$ ' is transitive $(L_1\leq_p L_2 \text{ and } L_2\leq_p L_3\Rightarrow L_1\leq_p L_3)$. Therefore, in order to show that L is \mathcal{NP} -hard, it suffices to reduce a known \mathcal{NP} -hard problem \tilde{L} to L, i.e. $\tilde{L}\leq_p L$. Finally a language is called \mathcal{NP} -complete $(\Leftrightarrow: L\in\mathcal{NPC})$, if

- 1. $L \in \mathcal{NP}$ and
- 2. L is \mathcal{NP} -hard.
- (a) Show CLIQUE:= $\{\langle G, k \rangle | G \text{ has a clique of size at least } k \} \in \mathcal{NPC}$.
- (b) Show HITTINGSET := $\{\langle \mathcal{U}, S, k \rangle \mid \text{universe } \mathcal{U} \text{ has subset of size at most } k \text{ that } hits \text{ all sets in } S \subseteq 2^{\mathcal{U}} \} \in \mathcal{NPC}$.

For both parts, use the fact that VERTEXCOVER := $\{\langle G, k \rangle \mid \text{Graph } G \text{ has a } vertex \text{ cover of size at most } k\} \in \mathcal{NPC}$.

Hint: For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms:

for part (a), an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle G', k' \rangle$ of Clique s.t. a vertex cover of size $\leq k$ in G becomes a clique of G' of size $\geq k'$ vice versa(!)

for part (b), an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle \mathcal{U}, S, k' \rangle$ of HittingSet, s.t. a vertex cover of size $\leq k$ in G becomes a hitting set of \mathcal{U} of size $\leq k'$ for S and vice versa(!).