
Theoretical Computer Science
Bridging Course

Introduction / General Info
−

Winter Term 2021/22
Fabian Kuhn

TCS Bridging Course Fabian Kuhn 2

About the Course

Topics

• Foundations of theoretical computer science

• Introduction to logic

No lectures

• There are recordings which you are supposed to watch

Exercises

• There will be weekly exercises which you need to do
– Doing the exercises is not mandatory, but highly recommended

Exam

• A oral exam at the end of the term
– Details will be published on the course web page a.s.a.p.

TCS Bridging Course Fabian Kuhn 3

About the course

What is the purpose of the course?
Who is it targeted to?

• The course is for incoming M.Sc. students who do not have the
necessary theory background required by the M.Sc. program.
– E.g., students who did not study computer science or

students from more applied schools, ...

TCS Bridging Course Fabian Kuhn 4

Website

• All necessary information about the course will be published on

http://ac.informatik.uni-freiburg.de/teaching/ws21_22/tcs-bridging.php

– Or go to my group’s website: http://ac.informatik.uni-freiburg.de

– Then follow teaching – winter term 2021/22 – TCS bridging course

• Please check the website for
– Recordings and slides

– Exercises and sample solutions

– Pointers to additional literature
(e.g., written lecture notes from an older version of this lecture)

– Information about the exam

– …

http://ac.informatik.uni-freiburg.de/teaching/ws21_22/tcs-bridging.php
http://ac.informatik.uni-freiburg.de/

TCS Bridging Course Fabian Kuhn 5

Exercises

There will be weekly exercise sheets:

• Exercise sheets are published at the latest on Monday on the
website

• Exercises are due after one week on the Sunday night before the
exercise tutorial
– If you want corrections / comments from your tutor

• Hand in your exercises on paper (in tutorial) or by email

• If you work in a group, the group needs to hand in one solution
– Make sure that all students participate in solving & writing equally!

• After getting back your exercises, you can meet and discuss the
exercises with your tutor
– On Mondays or if additional help is necessary on request

TCS Bridging Course Fabian Kuhn 6

Exercise Tutorials

Assistant for the course:

• Salwa Faour, salwa.faour@cs.uni-freiburg.de

Weekly Tutorials:

• There is a weekly tutorial on Monday from 10:15 – 12:00
– The tutorials will be online through Zoom.

• In the tutorial, we discuss the upcoming exercise sheet and
your solutions of the last exercise sheet
– You are required to actively participate in the tutorials and ask

questions.

• Also ask your tutor if you have any questions!

mailto:salwa.faour@cs.uni-freiburg.de

TCS Bridging Course Fabian Kuhn 7

Exercises

The exercises are the most important part of the course!

• To pass the exam, it is important that you do the exercises

• If you feel comfortable with all the exercises, you should also be
able to pass the exam

• When working in groups, make sure that you all participate in
solving the questions and in writing the solutions!
– You should all be able to explain your solutions to your tutor.

TCS Bridging Course Fabian Kuhn 8

Course Topics

Foundations of Theoretical Computer Science

• Automata theory

• Formal languages, grammars

• Turing machines

• Decidability

• Computational complexity

Introduction to Logic

• Propositional logic

• First order logic

TCS Bridging Course Fabian Kuhn 9

Purpose of the Course

Goal: Understand the fundamental capabilities and limitations of
computers

• What does it mean to “compute”?
– Automata theory

• What can be computed?
– Theory on computability/decidability

• What can be computed efficiently?
– Computational complexity

TCS Bridging Course Fabian Kuhn 10

Meaning of “Computing”

Mathematical Models

• Turing machines 1930s

• Finite state automata 1940s

• Formal grammars 1950s

Practical Aspects

• Compute architectures 1970s

• Programming languages 1970s

• Compilers 1970s

TCS Bridging Course Fabian Kuhn 11

Is My Function Computable?

Write an algorithm / computer program to compute it

• Can it compute the right answer for every instance?

• Does it always give an answer (in finite time)?

• Then you are done.

Otherwise, there are two options

• There is an algorithm, but you don’t know it

• There is no algorithm → the problem is unsolvable

Formally proving computability is sometimes hard!

• But you will learn how to approach this…

TCS Bridging Course Fabian Kuhn 12

Is My Function Computable?

• Many “known” problems are solvable
– Sorting, searching, knapsack, TSP, …

• Some problems are not solvable
– Halting problem

– Gödel incompleteness theorem

• Don’t try to solve unsolvable problems!

TCS Bridging Course Fabian Kuhn 13

Can I Compute My Function Efficiently?

• Some problems are “easy”
– Can we formally define what this means?

• Complexity theory is about this
– Complexity classes, tools for checking membership

• It is important to know how hard a problem is!

• Feasible problems:
– E.g., sorting, linear programming, LZW compression, primality testing, …

– Time to solve is polynomial in the size of the input

• Problems that are considered infeasible
– Some scheduling problems, knapsack, TSP, graph coloring, …

– Important open question: “Is P = NP”?

• Unfeasible problems
– Time exponential in input, e.g., quantified Boolean formula

TCS Bridging Course Fabian Kuhn 14

Questions?

Warming up
for TCS Bridging Course

• Mathematical objects, tools, notions:

• Sets
• Sequences
• Functions
• Graphs
• Strings and languages

• Types of Proof:

• By construction
• By contradiction
• By induction
• By counterexample

•The alphabet set ∑ = { a, c, n, o, r}

•𝐴 = {no, corona}

•𝐵 = {no, corona, roar, ac}

• Is 𝐴

• Is 𝐵 ⊆ 𝐴?

•𝐴 ∪ 𝐵?

•𝐴 ∩ 𝐵?

•𝐵\𝐴?

•𝐴\𝐵?

⊆ 𝐵?

•For any two sets 𝐴 and 𝐵,

𝐴 ∆𝐵 = ∅֞ 𝐴 = 𝐵

•For any two sets 𝐴 and 𝐵,

𝐴 ∆𝐵 = ∅֞ 𝐴 = 𝐵

Proof:

֜): A ∆B = (𝐴 \B) ∪ (𝐵\ 𝐴)= ∅

(𝐴\B)= ∅ and (𝐵\𝐴)= ∅

𝐴 ⊆ 𝐵 𝐵 ⊆ 𝐴

A=B

• Mathematical objects, tools, notions:

• Sets
• Sequences
• Functions
• Graphs
• Strings and languages

• Types of Proof:

• By construction
• By contradiction
• By induction
• By counterexample

Induction

• Goal: for an integer n ≥ 0, use mathematical induction to prove a statement
holds true for all values of n.

2 STEPS:

• Base step :

prove the statement true for n = 0

• Induction step:

assume the statement holds for any given case n= k, where k ≥ 0 and use this
assumption to prove the statement true for n = k + 1.

• Use proof by induction to prove

• 1+2+…+n=
𝑛(𝑛+1)

2
, for n ≥ 1

• Use proof by induction to prove

• 1+2+…+n=
𝑛(𝑛+1)

2
, for n ≥ 1

• Base step: for n=1, we have
1(1+1)

2
= 1

• Induction step: assume for any case n=k holds, where k is some
integer k ≥1

i.e. 1+2+…+k =
𝑘(𝑘+1)

2
, where k is some integer k ≥1

Now, let’s prove the statement true for n=k+1

i.e. 1+2+…+(k+1)=
(𝑘+1)(𝑘+2)

2
(is it true?)

1+2+…k + (k+1)=
𝑘(𝑘+1)

2
+ (k+1)=

𝑘 𝑘+1 +2 𝑘+1

2
=
(𝑘+1)(𝑘+2)

2
(Yes!)

• Mathematical objects, tools, notions:

• Sets
• Sequences
• Functions
• Graphs
• Strings and languages

• Types of Proof:

• By construction
• By contradiction
• By induction
• By counterexample

We write 𝐺 = (𝑉, 𝐸).

Graphs

Graphs

degree=3

degree=3degree =2

Graphs

Q. How many edges are there in a complete
graph on n vertices?

Q. How many edges are there in a complete
graph on n vertices?

∑𝑣∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣

2
=
𝑛(𝑛−1)

2
edges

Don’t count each edge twice!

• How many edges are there in a simple graph 𝐺 = (𝑉, 𝐸) ?

• ∑𝑣∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣 =

• How many edges are there in a simple graph 𝐺 = (𝑉, 𝐸) ?

• ∑𝑣∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣 = 2 |𝐸| (Handshaking Lemma)

• Each edge contributes 2 to the sum on the left.

Can you?

• Draw a graph on 5 nodes such that each node is of degree 3.

Can you?

Draw a graph on 5 nodes such that each node is of degree 3

• Solution: you can’t!

• Sum of all degrees= 5 x 3= 15

• See you Next Week !

