
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, G. Schmid

Algorithm Theory

Sample Solution Exercise Sheet 1
Due: Wednesday, 26th of October, 2022, 11:59 pm

Exercise 1: Landau Notations (5 Points)

Prove or disprove the following:

(a) n log n ∈ Θ(log(n!)) (2 Points)

(b) n3 − 9n2 ∈ Ω(n3) (1 Point)

(c)
(

log(
√
n)
)2 ∈ Θ(log n) (2 Points)

Sample Solution

(a) True.

• n log n ∈ Ω(log(n!)):

for all n ≥ 1, we have that n log n = log n+log n+ ...+log n ≥ log n+log(n−1)+ ...+log 1 =
log(n · (n− 1) · ... · 1) = log(n!) (choose c = 1 and n0 = 1).

• n log n ∈ O(log(n!)):

for all n ≥ 4, we have that log(n!) = log n + log(n − 1) + ... + log(dn2 e) + ... + log 1 ≥
log(dn2 e) + log(dn2 e) + ...+ log(dn2 e) + log((dn

2
e)− 1) + ... + log 1︸ ︷︷ ︸

≥0

≥ n
2 log(n2) ≥ n

2 (log n− 1) ≥

n
2 (log n− logn

2) = 1
4n log n for all n ≥ 4, thus n log n ≤ 4 · log(n!) (choose c = 4 and n0 = 4).

(b) True. For all n ≥ 18, we have n3 ≥ 18n2 and thus n3 − 9n2 ≥ n3 − 9(n
3

18) = 1
2n

3 (choose c = 1/2
and n0 = 18).

(c) False. We show that (log(
√
n))

2
/∈ O(log n) by contradiction. Suppose that (log(

√
n))

2 ∈ O(log n),
then there exists c > 0 and n0 ∈ N∗ such that for all n ≥ n0

(log(
√
n))

2 ≤ c log n
⇔ 1

4(log n)2 ≤ c log n
⇔ (log n)2 ≤ 4c log n
⇔ log n ≤ 4c
⇔ n ≤ 24c

if we choose n := max{d24ce+ 1, n0} ≥ n0, then d24ce+ 1 ≤ n ≤ 24c, which is a contradiction.

Exercise 2: The Majority Element (7 Points)

An array A[1...n] is said to have a majority element if more than half of its elements are the same.
Given an array, the goal is to design an efficient algorithm to tell whether the array has a majority
element or not, and, if so to find that element.
Note that the elements of the array need not to belong to some ordered domain e.g. N, hence there
can be no comparisons of the form e.g. A[i] < A[j]. However, we can test equality of two elements in
O(1)-time.

(a) Give an algorithm that solves the problem in O(n log n)-time, argue correctness, and analyze its
running time. (2 Points)

(b) Try speeding things up and give a linear time algorithm that solves the problem, argue correctness,
and analyze its running time. (5 Points)
Hint: try reducing the size of the array to at most half via pairing up elements.

Sample Solution

(a) We will use a divide and conquer approach to solve the problem.

Algorithm idea: if n = 1, then return A[1]. If n ≥ 2, then divide the input array A into two
halves and solve each half recursively to check whether there exists an element that appears more
than n/4 times in that half. If any of the recursive solutions return an element, then scan it in
the other half to see if it appears more than n/2 overall. If yes, then return that element as the
majority element, else return that no majority element exists in A.

Correctness: we need to show that if indeed there is an element in A that appears more than
n/2 times then the algorithm returns it, else it returns that such an element doesn’t exist. We
observe two things: firstly, ”if A has a majority element, then this element will also be a majority
element in either one of the two halves of A i.e. it will appear more than n/4 times in that half.”
Secondly, there cannot be two distinct majority elements in the same array. Therefore combining
the two observations, if A contains a majority element, then one of the recursive calls will indeed
return it and the linear scan on the other half will verify that it appears more than half the size
of A overall. Otherwise, the algorithm returns that there is no majority element in A (i.e. this is
true even if the recursive calls return a majority element to their corresponding halves, eventually
the linear scan will confirm that neither one of them is a majority element of A).

Running time: we get the recurrence relation (for the special case where n is power of 2)
T (n) = 2T (n2) +O(n) and T (1) = O(1), hence we obtain an algorithm of running time O(n log n).

(b) We will use another divide and conquer approach to solve the same problem.

Algorithm idea: First, we start from the beginning of our input array A and pair up every two
consecutive elements until the end of the array (notice that at the end of this pairing up procedure
if n happens to be even, then all ellements are paired up, otherwise A[n] will be left unpaired and
at this point we test whether it is the majority element via a linear scan of the array; if yes, then
return A[n] as the majority element, else we discard it and continue in the following). Also, while
doing this pairing up procedure above we simultaneously do a filtering step as follows: for each
pair if they are different, then discard both, else they are the same and we can keep only one of
the duplicates.
Finally, we repeat doing this filtering step until either only one element remains, at which point
we can test via a linear scan of the array if it is indeed a majority element and return it, or no
elements remain and we can directly return that no majority element exists in A.

Correctness: The correctness of the algorithm relies on the following claim if A has a majority
element, then it remains a majority element at the end of the algorithm in the final array (which
will only be one element) and to see why this is, notice the only two cases we have at the end of
the algorithm:

• Case 1: no elements remain, thus we can say that in particular no majority element exists,
and by the contraposition of the claim we know that no majority element in A should also
exist, which is what the algorithm returns.

• Case 2: only one element remains, thus we check if it is a majority element. If yes, we are
done, else by the claim we know that A shouldn’t have a majority element, which is what
the algorithm outputs.

Now, notice that the claim is a direct deduction of the following observation if an element is a
majority element in the original array, it remains a majority element in the filtered array i.e. the
remaining array after one filtering step. Thus we are left to show the observation. Indeed, let
X1, X2 define the number of appearances of the majority element x in the original array, filtered
array respectively. Let Y1, Y2 also define the number of appearances of the remaining elements in
the original array, filtered array respectively. We initially have X1 > Y1. Now, let’s pay a closer
look to what is happening in the filtering step: if we think of all the pairs (a, b) where a 6= b, then
both will be discarded during the filtering process, hence, the same amount that is reduced from
X1 will also be reduced from Y1 (if anything even more). Thus we are left with more of pairs of
the form (x, x) than (a, a) where a 6= x. And hence when keeping one of the duplicates for each
same element pair in the filtering step, we will end up with X2 > Y2 and thus X2 is more than
half the size of the filtered array (i.e. x remains a majority element in the filtered array), which
proves what we want.

Running time: Notice that the size of the array is always reduced by at most half after each
filtering step and since the filtering can be carried out in linear time and the size of the problem
halves after each filtering step, we get the recurrence relation T (n) ≤ T (n2) + O(n) for n > 2 and
T (n) = O(1) for n ≤ 2, hence we obrain an algorithm of running time O(n).

Exercise 3: Almost Closest Pairs of Points (8 Points)

In the lecture, we discussed an O(n log n)-time divide-and-conquer algorithm to determine the closest
pair of points. Assume that we are not only interested in the closest pair of points, but in all pairs of
points that are at distance at most twice the distance between the closest two points.

(a) How many such pairs of points can there be? It is sufficient to give your answer using big-O
notation. (3 Points)

(b) Devise an algorithm that outputs a list with all pairs of points at distance at most twice the
distance between the closest two points. Describe what you have to change compared to the
closest pair algorithm of the lecture and analyze the running time of your algorithm. (5 Points).

Sample Solution

The recursive algorithm for finding the closest pair of points, that was presented in the lecture,
recursively divided the set of points on the plane into two sets and found the minimal distance as
min{d`, dr, d`r}, where d` and dr are the minimal distances among the pairs of points in both sets and
d`r is the minimal distance between pairs of points that lie in different sets. It was shown that finding
d`r has linear complexity and the overall running time of the algorithm is O(n log n).

2d/3

2d/34d

4d

(a) Positioning of points that are
at distance at most 2d and at
least at distance d around the ac-
tual point we are checking.

2d

4d

2d/3

2d/3

(b) There is at most one point in each small square. We
need to look only at most at 17 points.

Figure 1: Each small square can contain at most one point inside.

a) Let us assume that the closest pair of points is already known and the distance between them is
d. For each point p we evaluate how many points there can be in distance 2d. Figure 1a shows how
the points at distance at most 2d from the center point can be covered using 36 squares with side
length 2d/3. As 2

√
2d/3 < d each such square can contain at most one point (including points on the

boundary) and since the center point is part of 4 squares, the figure shows that a point can have at
most 32 other points at distance at most 2d. This way we count each pair twice and thus the number
of pairs of points at distance at most 2d is at most 32

2 n = O(n).

b) Now, let us modify the divide-and-conquer algorithm from the lecture, in order to solve our task.
As in the closest pair algorithm of the lecture, after sorting points by their x-coordinate, we divide
the set of points into a left subset Sl and a right subset Sr of equal size and we recursively find the
smallest distance d` (dr) in the left (right) half, as well as the list L` (Lr) that contains all pairs of
points in S` (Sr) that are in distance at most 2d` (2dr) of each other.
For the merging step we find the smallest distance between points that are on different sides of the
division line and at the same time compile a list of pairs of points at distance at most 2 min{d`, dr}
such that the points lie on different sides. We compute d = min{d`, dr, d`r}, concatenate the three
lists and remove all pairs < p, q > for which d(p, q) > 2d from the combined list. Finally, we return d
and the list with all pairs of points at distance at most 2d.

dist(S): returns < d,L, Y >
Divide: Divide (sorted) set of points S in two equally sized sets S` and Sr.
Conquer: Apply algorithm to both sets S` and Sr. Compute minimal distances d`, dr, lists of point
pairs L` and Lr and lists Y` and Yr of points sorted by their y-coordinate.
Merge: Compute d`r and L`r and return d := min(d`, dr, d`r). L′ := L` ∪ Lr ∪ L`r; L := L′ \ {<
p, q >: d(p, q) > 2d}; return L. Merge Y` and Yr into a new sorted list Y .
Let us take a closer look at merge step of the algorithm. For the merge step of the algorithm that was
looking for the closest pair of points, it was shown that for each point, at most 7 points that lie in a
rectangle d× 2d have to be checked to find d`r correctly. This resulted in a merge step of cost O(n).
For finding d`r we do the same, but for constructing L`r we consider a rectangle 2d× 4d. To illustrate
our idea, consider the picture (Figure 1b). If we divide this rectangle into squares 2d

3 ×
2d
3 each, we

can see that each of such square can contain at most one point (because d is our current minimal
distance). There are 18 such squares and thus within the list Y we need to compare any point p only
with its 17 successors. This leads us to the same recurrence relation T (n) ≤ 2 · T (n2) + 17n and we
again obtain an algorithm running time of O(n log n).

