Algorithm Theory
 Sample Solution Exercise Sheet 2

Due: Wednesday, 9th of November, 2022, 11:59 pm

Exercise 1: Faster Polynomial Multiplication

Let $p(x):=2 x^{3}-x^{2}+4 x+4$. The goal is to compute $p(x)^{2}$ with the help of the FFT algorithm. Please, make use of the following sketch:

1. Illustrate the divide procedure of the algorithm. More precisely, for the i-th divide step, write down all the polynomials $p_{i j}$ for $j \in\left\{0, \ldots, 2^{i}-1\right\}$ that you obtain from further dividing the polynomials from the previous divide step $i-1$ (we define $p_{00}:=p$, and the first split is into p_{10} and p_{11} and so on...).
2. Illustrate the combine procedure of the algorithm. That is, starting with the polynomials of smallest degree as base cases, compute the DFT of $p_{i j}$ bottom up with the recursive formula given in the lecture. The recursion stops when $D F T_{8}\left(p_{00}\right)$ is computed.
3. Multiply the polynomials. More specific, give the point value representation of $p^{2}(x)$, i.e., $\left(w_{8}^{0}, y_{0}\right),\left(w_{8}^{1}, y_{1}\right), \ldots,\left(w_{8}^{7}, y_{7}\right)$.
4. Use the inverse DFT procedure from the lecture to get the final coefficients for $p(x)^{2}$. To do that efficiently, first compute the $\operatorname{DFT}_{8}(q)$ where $q(x):=y_{0}+y_{1} \cdot x+\ldots+y_{7} \cdot x^{7}$ and then compute the coefficients a_{k} for $k \in\{0,1, \ldots, 7\}$.

Write down all intermediate results to get partial points in the case of a typo.

Sample Solution

1. divide:

$$
\begin{aligned}
& p_{00}=2 x^{3}-x^{2}+4 x+4 \\
& p_{10}=-x+4 \\
& p_{11}=2 x+4 \\
& p_{20}=4 \\
& p_{21}=-1 \\
& p_{22}=4 \\
& p_{23}=2
\end{aligned}
$$

2. combine: Bottom up using previous values:

$$
\begin{aligned}
& p_{10}\left(w_{4}^{0}\right)=p_{20}\left(w_{2}^{0}\right)+w_{4}^{0} \cdot p_{21}\left(w_{2}^{0}\right)=4+1 \cdot(-1)=3 \\
& p_{10}\left(w_{4}^{1}\right)=p_{20}\left(w_{2}^{1}\right)+w_{4}^{1} \cdot p_{21}\left(w_{2}^{1}\right)=4+i \cdot(-1)=4-i \\
& p_{10}\left(w_{4}^{2}\right)=p_{20}\left(w_{2}^{0}\right)+w_{4}^{2} \cdot p_{21}\left(w_{2}^{0}\right)=4-1 \cdot(-1)=5 \\
& p_{10}\left(w_{4}^{3}\right)=p_{20}\left(w_{2}^{1}\right)+w_{4}^{3} \cdot p_{21}\left(w_{2}^{1}\right)=4-i \cdot(-1)=4+i
\end{aligned}
$$

$$
\begin{aligned}
& p_{11}\left(w_{4}^{0}\right)=p_{22}\left(w_{2}^{0}\right)+w_{4}^{0} \cdot p_{23}\left(w_{2}^{0}\right)=4+2=6 \\
& p_{11}\left(w_{4}^{1}\right)=p_{22}\left(w_{2}^{1}\right)+w_{4}^{1} \cdot p_{23}\left(w_{2}^{1}\right)=4+2 i \\
& p_{11}\left(w_{4}^{2}\right)=p_{22}\left(w_{2}^{0}\right)+w_{4}^{2} \cdot p_{23}\left(w_{2}^{0}\right)=4-2=2 \\
& p_{11}\left(w_{4}^{3}\right)=p_{22}\left(w_{2}^{1}\right)+w_{4}^{3} \cdot p_{23}\left(w_{2}^{1}\right)=4-2 i
\end{aligned}
$$

Now we can go to the next recursion level. Note that we have $w_{8}^{0}=1, w_{8}^{1}=\frac{1+i}{\sqrt{2}}, w_{8}^{2}=i$, $w_{8}^{3}=\frac{-1+i}{\sqrt{2}}, w_{8}^{4}=-1, w_{8}^{5}=-w_{8}^{1}, w_{8}^{6}=-i, w_{8}^{7}=-w_{3}^{8}$.

$$
\begin{aligned}
& p_{00}\left(w_{8}^{0}\right)=p_{10}\left(w_{4}^{0}\right)+w_{8}^{0} \cdot p_{11}\left(w_{4}^{0}\right)=3+6=9 \\
& p_{00}\left(w_{8}^{1}\right)=p_{10}\left(w_{4}^{1}\right)+w_{8}^{1} \cdot p_{11}\left(w_{4}^{1}\right)=4-i+\frac{1+i}{\sqrt{2}}(4+2 i)=4+\sqrt{2}+i \cdot(3 \sqrt{2}-1) \\
& p_{00}\left(w_{8}^{2}\right)=p_{10}\left(w_{4}^{2}\right)+w_{8}^{2} \cdot p_{11}\left(w_{4}^{2}\right)=5+2 i \\
& p_{00}\left(w_{8}^{3}\right)=p_{10}\left(w_{4}^{3}\right)+w_{8}^{3} \cdot p_{11}\left(w_{4}^{3}\right)=4+i+\frac{-1+i}{\sqrt{2}} \cdot(4-2 i)=4-\sqrt{2}+i \cdot(3 \sqrt{2}+1) \\
& p_{00}\left(w_{8}^{4}\right)=p_{10}\left(w_{4}^{0}\right)-w_{8}^{0} \cdot p_{11}\left(w_{4}^{0}\right)=3-6=-3 \\
& p_{00}\left(w_{8}^{5}\right)=p_{10}\left(w_{4}^{1}\right)-w_{8}^{1} \cdot p_{11}\left(w_{4}^{1}\right)=4-i-\frac{1+i}{\sqrt{2}}(4+2 i)=4-\sqrt{2}+i \cdot(-3 \sqrt{2}-1) \\
& p_{00}\left(w_{8}^{6}\right)=p_{10}\left(w_{4}^{2}\right)-w_{8}^{2} \cdot p_{11}\left(w_{4}^{2}\right)=5-2 i \\
& p_{00}\left(w_{8}^{7}\right)=p_{10}\left(w_{4}^{3}\right)-w_{8}^{3} \cdot p_{11}\left(w_{4}^{3}\right)=4+i-\frac{-1+i}{\sqrt{2}} \cdot(4-2 i)=4+\sqrt{2}+i \cdot(-3 \sqrt{2}+1)
\end{aligned}
$$

3. Multiply: Now $p^{2}(x)$ has the following point value representation

$$
\begin{aligned}
& \left(w_{8}^{0}, 81\right) \\
& \left(w_{8}^{1}, 14 \sqrt{2}-1+i \cdot(22 \sqrt{2}+4)\right) \\
& \left(w_{8}^{2}, 21+20 i\right) \\
& \left(w_{8}^{3},-14 \sqrt{2}-1+i \cdot(22 \sqrt{2}-4)\right) \\
& \left(w_{8}^{4}, 9\right) \\
& \left(w_{8}^{5},-14 \sqrt{2}-1+i \cdot(-22 \sqrt{2}+4)\right) \\
& \left(w_{8}^{6}, 21-20 i\right) \\
& \left(w_{8}^{7}, 14 \sqrt{2}-1+i \cdot(-22 \sqrt{2}-4)\right)
\end{aligned}
$$

4. Inverse DFT: To efficiently compute the inverse DFT, we again have to do some bottom-up computation, now based on the polynomial $q(x)=y_{7} x^{7}+y_{6} x^{6}+\ldots+y_{0}$, where the y_{i} values are the y -values in the point value representation of p^{2}.

$$
\begin{aligned}
& q_{00}=q \\
& q_{10}=y_{6} x^{3}+y_{4} x^{2}+y_{2} x+y_{0} \\
& q_{11}=y_{7} x^{3}+y_{5} x^{2}+y_{3} x+y_{1} \\
& q_{20}=y_{4} x+y_{0} \\
& q_{21}=y_{6} x+y_{2} \\
& q_{22}=y_{5} x+y_{1} \\
& q_{23}=y_{7} x+y_{3} \\
& q_{30}=y_{0}=81 \\
& q_{31}=y_{4}=9 \\
& q_{32}=y_{2}=21+20 i \\
& q_{33}=y_{6}=21-20 i \\
& q_{34}=y_{1}=14 \sqrt{2}-1+i \cdot(22 \sqrt{2}+4) \\
& q_{35}=y_{5}=-14 \sqrt{2}-1+i \cdot(-22 \sqrt{2}+4) \\
& q_{36}=y_{3}=-14 \sqrt{2}-1+i \cdot(22 \sqrt{2}-4) \\
& q_{37}=y_{7}=14 \sqrt{2}-1+i \cdot(-22 \sqrt{2}-4)
\end{aligned}
$$

$$
\begin{aligned}
& q_{20}\left(w_{2}^{0}\right)=q_{30}\left(w_{1}^{0}\right)+w_{2}^{0} \cdot q_{31}\left(w_{1}^{0}\right)=81+9=90 \\
& q_{20}\left(w_{2}^{1}\right)=q_{30}\left(w_{1}^{0}\right)+w_{2}^{1} \cdot q_{31}\left(w_{1}^{0}\right)=81-9=72 \\
& q_{21}\left(w_{2}^{0}\right)=q_{32}\left(w_{1}^{0}\right)+w_{2}^{0} \cdot q_{33}\left(w_{1}^{0}\right)=21+20 i+21-20 i=42 \\
& q_{21}\left(w_{2}^{1}\right)=q_{32}\left(w_{1}^{0}\right)+w_{2}^{1} \cdot q_{33}\left(w_{1}^{0}\right)=21+20 i-21+20 i=40 i \\
& q_{22}\left(w_{2}^{0}\right)=q_{34}\left(w_{1}^{0}\right)+w_{2}^{0} \cdot q_{35}\left(w_{1}^{0}\right)=-2+8 i \\
& q_{22}\left(w_{2}^{1}\right)=q_{34}\left(w_{1}^{0}\right)+w_{2}^{1} \cdot q_{35}\left(w_{1}^{0}\right)=28 \sqrt{2}+44 \sqrt{2} i \\
& q_{23}\left(w_{2}^{0}\right)=q_{36}\left(w_{1}^{0}\right)+w_{2}^{0} \cdot q_{37}\left(w_{1}^{0}\right)=-2-8 i \\
& q_{23}\left(w_{2}^{1}\right)=q_{36}\left(w_{1}^{0}\right)+w_{2}^{1} \cdot q_{37}\left(w_{1}^{0}\right)=-28 \sqrt{2}+44 \sqrt{2} i
\end{aligned}
$$

$$
\begin{aligned}
& q_{10}\left(w_{4}^{0}\right)=q_{20}\left(w_{2}^{0}\right)+w_{4}^{0} \cdot q_{21}\left(w_{2}^{0}\right)=90+42=132 \\
& q_{10}\left(w_{4}^{1}\right)=q_{20}\left(w_{2}^{1}\right)+w_{4}^{1} \cdot q_{21}\left(w_{2}^{1}\right)=72+40 i^{2}=32 \\
& q_{10}\left(w_{4}^{2}\right)=q_{20}\left(w_{2}^{0}\right)+w_{4}^{2} \cdot q_{21}\left(w_{2}^{0}\right)=90-42=48 \\
& q_{10}\left(w_{4}^{3}\right)=q_{20}\left(w_{2}^{1}\right)+w_{4}^{3} \cdot q_{21}\left(w_{2}^{1}\right)=72-40 i^{2} 9=112
\end{aligned}
$$

$$
\begin{aligned}
& q_{11}\left(w_{4}^{0}\right)=q_{22}\left(w_{2}^{0}\right)+w_{4}^{0} \cdot q_{23}\left(w_{2}^{0}\right)=-4 \\
& q_{11}\left(w_{4}^{1}\right)=q_{22}\left(w_{2}^{1}\right)+w_{4}^{1} \cdot q_{23}\left(w_{2}^{1}\right)=-16 \sqrt{2}+16 \sqrt{2} i \\
& q_{11}\left(w_{4}^{2}\right)=q_{22}\left(w_{2}^{0}\right)+w_{4}^{2} \cdot q_{23}\left(w_{2}^{0}\right)=16 i \\
& q_{11}\left(w_{4}^{3}\right)=q_{22}\left(w_{2}^{1}\right)+w_{4}^{3} \cdot q_{23}\left(w_{2}^{1}\right)=72 \sqrt{2}+72 \sqrt{2} i
\end{aligned}
$$

And finally:

$$
\begin{aligned}
& q_{00}\left(w_{8}^{0}\right)=q_{10}\left(w_{4}^{0}\right)+w_{8}^{0} \cdot q_{11}\left(w_{4}^{0}\right)=128 \\
& q_{00}\left(w_{8}^{1}\right)=q_{10}\left(w_{4}^{1}\right)+w_{8}^{1} \cdot q_{11}\left(w_{4}^{1}\right)=0 \\
& q_{00}\left(w_{8}^{2}\right)=q_{10}\left(w_{4}^{2}\right)+w_{8}^{2} \cdot q_{11}\left(w_{4}^{2}\right)=48+16 i^{2}=32 \\
& q_{00}\left(w_{8}^{3}\right)=q_{10}\left(w_{4}^{3}\right)+w_{8}^{3} \cdot q_{11}\left(w_{4}^{3}\right)=-32 \\
& q_{00}\left(w_{8}^{4}\right)=q_{10}\left(w_{4}^{0}\right)-w_{8}^{0} \cdot q_{11}\left(w_{4}^{0}\right)=132+4=136 \\
& q_{00}\left(w_{8}^{5}\right)=q_{10}\left(w_{4}^{1}\right)-w_{8}^{1} \cdot q_{11}\left(w_{4}^{1}\right)=64 \\
& q_{00}\left(w_{8}^{6}\right)=q_{10}\left(w_{4}^{2}\right)-w_{8}^{2} \cdot q_{11}\left(w_{4}^{2}\right)=48-i(16 i)=64 \\
& q_{00}\left(w_{8}^{7}\right)=q_{10}\left(w_{4}^{3}\right)-w_{8}^{3} \cdot q_{11}\left(w_{4}^{3}\right)=256
\end{aligned}
$$

As stated in slide 10 of the lecture, one can compute the coefficients by $a_{k}=1 / 8 \cdot q\left(w_{8}^{-k}\right)$, so:

$$
\begin{aligned}
a_{0} & =128 / 8=16 \\
a_{1} & =256 / 8=32 \\
a_{2} & =64 / 8=8 \\
a_{3} & =64 / 8=8 \\
a_{4} & =136 / 8=17 \\
a_{5} & =-32 / 8=-4 \\
a_{6} & =32 / 8=4 \\
a_{7} & =0 \\
\Rightarrow p^{2}(x)=4 x^{6}-4 x^{5}+17 x^{4}+8 x^{3}+8 x^{2} & +32 x+16 .
\end{aligned}
$$

Exercise 2: FFT Application

(6 Points)

Let A, B be two sets of integers between 0 and n i.e., $A, B \subseteq\{0,1,2, \ldots, n\}$. We define two random variables X_{A} and X_{B}, where X_{A} is obtained by choosing a number uniformly at random from A and X_{B} is obtained by choosing a number uniformly at random from B. We further define the random variable $Z:=X_{A}+X_{B}$. Note that Z can take values in the range $0, \ldots, 2 n$.
Give an $O(n \log n)$ algorithm to compute the distribution of Z. Hence, the algorithm should compute the probability $P(Z=z)$ for all $z \in\{0, \ldots, 2 n\}$. Note that $\sum_{z=0}^{2 n} P(Z=z)=1$. You can use the algorithms of the lecture as a black box. State the correctness of your algorithm and also explain the runtime!

Sample Solution

Our algorithm works as follows, first we construct a polynomial $p_{A}(x)=\sum_{i=0}^{n} a_{i} x^{i}$ where $a_{i}:=1$ if $i \in A$ and $a_{i}:=0$ otherwise. In the same manner we construct the polynomial $p_{B}(x)=\sum_{i=0}^{n} b_{i} x^{i}$. Note that those constructions require only linear time.
Now we multiply those polynomials i.e., $p_{Z}(x)=p_{A}(x) \cdot p_{B}(x)=\sum_{i=0}^{2 n} c_{i} x^{i}$. Using FFT, this multiplication can be computed in $O(n \log n)$ time. This gives us the coefficients of $p_{Z}(x): c_{0}, \ldots, c_{2 n}$. The resulting distribution will be determined in the following way, for some given $z \in\{0, \ldots, 2 n\}$: $P(Z=z):=\frac{c_{z}}{|A| \cdot|B|}$. Computing this value for each z also takes linear time. It follows that the overall runtime is dominated by the FFT step and therefore is $O(n \log n)$.

It remains to show that $P(Z=z)=\frac{c_{z}}{|A| \cdot|\cdot| \mid}$ is true. First take note that we have $P\left(X_{A}=k\right)=\frac{a_{k}}{|A|}$, and similarly $P\left(X_{B}=k\right)=\frac{b_{k}}{|B|}$. Further, by the definition of the multiplication of polynomials, we
have $c_{k}=\sum_{i=0}^{k} a_{i} \cdot b_{k-i}$. It then follows:

$$
\begin{aligned}
P(Z=z) & =P\left(X_{A}+X_{B}=z\right) \\
& =\sum_{i=0}^{z} P\left(X_{A}=i \wedge X_{B}=z-i\right) \\
& =\sum_{i=0}^{z} P\left(X_{A}=i\right) \cdot P\left(X_{B}=z-i\right) \\
& =\frac{1}{|A| \cdot|B|} \cdot \sum_{i=0}^{z} a_{i} \cdot b_{z-i} \\
& =\frac{1}{|A| \cdot|B|} \cdot c_{z}
\end{aligned}
$$

